PRELIMINARY PHYTOCHEMICAL AND ANTIMICROBIAL EVALUATION OF GALLS OF QUERCUS INFECTORIA

S.K. Sreekanth*1, V. Ganesan1, M. Kannappan1, Deepa.T.Vasudevan1
*1Department of Pharmaceutics, Research Scholar, Karpagam University, Coimbatore, Tamilnadu, India.

ABSTRACT
The galls of Quercus infectoria Olivier’s was used in the treatment of skin infections. Use of plant based drugs and chemicals for curing various ailments and personal adornment is as old as human civilization. The aim of the study was to find out the bioactive chemical constituents and to evaluate the antimicrobial activity of the aqueous, ethanolic and petroleum ether extracts of traditionally used medicinal plant, the galls of Quercus infectoria. A qualitative phytochemical analysis indicates the presence of alkaloids, glycosides, phenolic compounds, flavonoids, tannins and proteins and amino acids. The result of antimicrobial susceptibility assay showed promising evidence for the antimicrobial effects of Gall of Quercus infectoria. Ethanolic extract of Gall of Quercus infectoria showed maximum inhibition and the MIC values of ethanol extracts against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans were, respectively, 0.0391, 0.0781, 0.0391 and 0.0195 mg/mL. Whereas the MIC values of the extract (0.0391 mg/mL) against both the organisms Staphylococcus aureus, Pseudomonas aeruginosa, were the same. On the other hand, the MBC values of ethanol extract against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, were, respectively, 0.0195, 0.0391 and 0.0195 mg/mL. Whereas the MFC value of ethanol extract against Candida albicans was much lower, that is 0.0098 mg/mL. This scientific studies has revealed its potential to provide an alternative for modern medicinal products as well as cosmetics and skin care products.

KEY WORDS
Phytochemical screening, Plant extracts and Zone of inhibition.

INTRODUCTION
Topical antimicrobial therapy is one of the most important methods of skin infections. The goal of topical antimicrobial therapy in skin infections is to control microbial colonization and subsequent proliferation thus promoting the healing of the wounds1.
Quercus infectoria is one of such plants employed by herbalists in the treatment of skin infections. In this research, Quercus infectoria was studied in order to investigate its antimicrobial properties. Quercus infectoria is a small tree or a shrub belonging to the Fagaceae (Quercaceae) family. Gall of Quercus infectoria (QI), or better known as Manjakani, is originated from Western Asia and Southern Europe. Galls are irregular plant growth, which is stimulated by the reaction between plant hormones and powerful growth regulating chemicals produced by insects or mites. The QI galls are produced by the insect, Cynips quercufolii, for depositing its eggs. The bioactivity and medicinal properties of herbal extracts are dependent on the presence of the chemical compounds. The chemical constituents of the galls have been reported to comprise a large amount of tannins and small amounts of free gallic acids, ellagic acid and synergic acid.

Rohana et al. (2004) reported that the QI galls aqueous extract showed high potential in skin whitening and antioxidant properties as the extract inhibited the superoxide and DPPH radical scavenging activities, and tyrosinase activities. The hydrolysable tannins including tannic acid and gallic acid are powerful astringent that are prescribed in diarrhoea.

The purpose of this study was to evaluate the in vitro antimicrobial activity of aqueous, ethanol and petroleum ether extracts and do the preliminary phytochemical evaluation to find out the responsible phytoconstituents in the above mentioned extracts.

MATERIAL AND METHODS
Preparation of extracts
The galls of Quercus infectoria used in this study were collected from local drug store. The galls were washed with distilled water, and dried in air. The galls were crushed in mechanical mortar. Aqueous, acetone and ethanol extractions were performed by the following method. 50 gm of gall powders were used with 300 ml of solvents with an extraction period 24-72 hours. The extracts were filtered using filter paper and the solvents were evaporated using rotary distillation apparatus. In order to obtain a completely dry extract, the resultant extracts were transferred to glass dishes, and were left in 50ºC ovens for 24 hours. Then, they were left at 4ºC until assessment of their antimicrobial activities.

Phytochemical Screening
The dried methanolic extract was analyzed for various phytoconstituents such as alkaloids, glycosides, terpenoids and steroids, flavonoids, reducing sugar and tannin by the following procedure:

Alkaloid
Alkaloids are basic nitrogenous compounds with definite physiological and pharmacological activity. Alkaloid solution produces white yellowish precipitate when a few drops of Mayer’s reagents are added. Most alkaloids are precipitated from neutral or slightly acidic solution by Mayer’s reagent. The alcoholic extract was evaporated to dryness and the residue was heated on a boiling water bath with 2% hydrochloric acid. After cooling, the mixture was filtered and treated with a few drops of Mayer's reagent. The samples were then observed for the presence of turbidity or yellow precipitation.

Glycoside
Glycosides are compounds which upon hydrolysis give rise to one or more sugars (glycones) and a compound which is not a sugar (aglycone or genine). To the solution of the extract in glacial acetic acid, few drops of ferric chloride and concentrated sulphuric acid are added, and observed for a reddish brown coloration at the junction of two layers and the bluish green color in the upper layer.

Terpenoid and steroid
Four milligrams of extract was treated with 0.5 ml of acetic anhydride and 0.5 ml of chloroform. Then concentrated solution of sulphuric acid was added slowly and red violet color was observed for terpenoid and green bluish color for steroids.

Flavonoid
Four milliliters of extract solution was treated with 1.5 ml of 50% methanol solution. The solution was warmed and metal magnesium was added. To this solution, 5-6 drops of concentrated hydrochloric acid was added and then warmed on a boiling water bath. Then the mixture was observed for red or blue color developed indicating the presence of flavonoid.
acid was added and red color was observed for flavonoids and orange color for flavones.

Tannins

To 0.5 ml of extract solution 1 ml of water and 1-2 drops of ferric chloride solution was added. Blue color was observed for gallic tannins and green black for catecholic tannins.

Determination of Antimicrobial Action

Microorganisms used

The test organisms used were *Staphylococcus aureus* (ATCC29737), *Escherichia coli* (ATCC2068), *Pseudomonas aeruginosa* (ATCC9027), Group A. *Streptococcus* and *Candida albicans* (ATCC10231).

Inoculum

The microorganisms were inoculated into soybean casein broth (SBCB) and incubated at 35 ± 2°C for 4 h. The resultant turbid suspension was diluted with SBCB to match with 1 McFarland turbidity standard. This level of turbidity is equivalent to approximately 3.0 × 10^8 CFU/ml.

Agar diffusion assay

Modified agar well diffusion method was employed. Mueller-Hinton agar plates were inoculated by streaking the swab over the entire sterile agar surface. This procedure was repeated by streaking 2 more times, rotating the plate approximately 60° each time to ensure even distribution of the inoculum. As a final step, the rim of the agar was also swabbed. After allowing the inoculum to dry at room temperature, 6-mm-diameter wells were bored in the agar. Each extract was checked for antimicrobial activity by introducing 100 μL of 4000 μg/ml concentration into triplicate wells. Simultaneously, gentamicin sulfate (*S. aureus, P. aeruginosa, and E. coli*), and nystatin (*C. albicans*) were used as positive controls at a concentration of 1.0 μg/ml and the dilution medium for the positive controls was sterile distilled water, ethanol and petroleum ether. The plates were allowed to stand at room temperature for 1 hr for the extract to diffuse into the agar and then they were incubated at 35 ± 2°C for 24 h, except *C. Albicans* which was incubated at 29 ± 2°C.

Determination of Minimal Inhibitory Concentration (MIC), Minimal Bactericidal Concentration (MBC) and Minimal Fungicidal Concentration (MFC)

The MIC was determined by micro-broth dilution methods. The reconstituted drug was serially diluted two fold in Mueller-Hinton broth (Oxoid) medium. Duplicate tubes of dilution ranging from 0.025 mg/ml to 25.6 mg/ml were inoculated with 5 x 10^5 cells (CFU) of the test bacterial strain and cultures incubated at 37 °C for 18 h. MIC was taken as the highest dilution (least concentration) of the drug showing no detectable growth.

MBC and MFC were determined by sub-culturing the test dilution in a fresh drug-free solid medium and incubating further for 18-24 h. The highest dilution that yielded no single bacterial and fungal colony on a solid medium was taken as MBC and MFC respectively.

RESULTS AND DISCUSSION

The results of preliminary phytochemical screening from Table No.1 show that extracts of Gall of *Quercus infectoria* revealed the presence of alkaloids, tannins, phenolic compounds, Fat and Lipids, Resins, proteins, glycosides and flavanoids.

It will be noted that the ethanol extracts give more positive tests for different chemical constituents. The traditional healers make use of water primarily as a solvent but this study has shown that the ethanol extract of Gall of *Quercus infectoria* contains more of the pharmacologically active secondary metabolites. This is because most of these secondary metabolites being organic in nature are soluble in ethanol.

The result of antimicrobial susceptibility assay from Table No.2 showed promising evidence for the antimicrobial effects of Gall of *Quercus infectoria* against bacterial (*S. aureus, P. aeruginosa, E. coli*) and fungal (*C. albicans*) pathogens. Methanolic extract of Gall of *Quercus infectoria* showed maximum inhibition 28 mm against *C. albicans* than other *Quercus infectoria* extracts. Ethanolic
extract of Gall of Quercus infectoria showed maximum inhibition 24mm against Staphylococcus aureus than other Gall of Quercus infectoria extracts. Ethanolic extract of Gall of Quercus infectoria showed maximum inhibition 19mm against P. aeruginosa than other Gall of Quercus infectoria extracts. Extract of Gall of Quercus infectoria showed maximum inhibition 28mm against C. albicans, by this finding it may be suggested that Gall of Quercus infectoria have highest antimicrobial properties.

The MIC values of the ethanol extract from the galls of Q. infectoria are shown in Table No.3. Thus MICs, MBC and MFC assay are capable of verifying that the compound has antimicrobial activity and that it gives reliable indication of the concentration of drug required to inhibit the growth of microorganisms. The MIC values of ethanol extracts against Staphylococcus aureus (ATCC29737), Escherichia coli (ATCC2068), Pseudomonas aeruginosa (ATCC9027), Candida albicans (ATCC10231) were, respectively, 0.0391, 0.0781, 0.0391 and 0.0195 mg/mL. Whereas the MIC values of the extract (0.0391 mg/mL) against both the organisms Staphylococcus aureus (ATCC29737), Pseudomonas aeruginosa (ATCC9027), were the same. On the other hand, the MBC values of ethanol extract against Staphylococcus aureus (ATCC29737), Escherichia coli (ATCC2068), Pseudomonas aeruginosa (ATCC9027), were, respectively, 0.0195, 0.0391 and 0.0195 mg/mL. Whereas the MFC value of ethanol extract against Candida albicans (ATCC10231) was much lower, that is 0.0098 mg/mL. This scientific studies has revealed its potential to provide an alternative for modern medicinal products as well as cosmetics and skin care products.

Table No.1: Phytochemical analysis of Gall of Quercus infectoria extracts

<table>
<thead>
<tr>
<th>S.No</th>
<th>Phytochemical composition</th>
<th>Aqueous Extract</th>
<th>Ethanol Extract</th>
<th>Pet ether Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaoids</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Phenolic</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Tannins</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Glycosides</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Protens and Aminiacid</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Resins</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Carbohydrtes</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Fat and Lipids</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Key: + = detected, - = Not detected
Table No.2: Antimicrobial activity of Gall of *Quercus infectoria* extracts

<table>
<thead>
<tr>
<th>Plant Extract</th>
<th>Staphylococcus aureus</th>
<th>Escherichia coli</th>
<th>Pseudomonas aeruginosa</th>
<th>Candida albicans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous extract</td>
<td>23±0</td>
<td>13±0</td>
<td>17±0</td>
<td>20±0</td>
</tr>
<tr>
<td>Ethanol extract</td>
<td>24±0</td>
<td>18±0</td>
<td>19±0</td>
<td>28±0</td>
</tr>
<tr>
<td>Pet. Ether extract</td>
<td>16±0</td>
<td>12±0</td>
<td>12±0</td>
<td>17±0</td>
</tr>
<tr>
<td>Gentamycin (1.0/ml)</td>
<td>22±0.0</td>
<td>21±0.0</td>
<td>23±0.0</td>
<td>NT</td>
</tr>
<tr>
<td>Nystatin (1.0/-ml)</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
<td>16±0.0</td>
</tr>
<tr>
<td>AQ, ET, PT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table No.3: MIC, MBC and MFC Values of ethanol extract of Gall of *Quercus infectoria*

<table>
<thead>
<tr>
<th>S.No</th>
<th>Concentration (mg/mL)</th>
<th>Staphylococcus aureus (ATCC29737)</th>
<th>Escherichia coli (ATCC206)</th>
<th>Pseudomonas aeruginosa (ATCC9027)</th>
<th>Candida albicans (ATCC10231)</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>2.5000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1.2500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>0.6250</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>0.3125</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>0.1563</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>0.0781</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0.0391</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0.0195</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>0.0098</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>0.0049</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
CONCLUSION
From the study it was found out that various bio-active constituents like Alkaloids, Flavanoids, Glycosides etc were present. The MIC, MBC and MFC values shows that, the compound has marked Anti-fungal and Anti-bacterial activity in terms of inhibition of fungal and bacterial growth *In-vitro*. It can be concluded that the potential of *Quercus infectoria* can be used for the preparation of pharmaceutical formulations.

ACKNOWLEDGEMENT
The authors would like to thank the Karpagam University, Coimbatore, Tamilnadu, India for the continuous support and encouragement throughout this work.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

REFERENCES

Please cite this article in press as: Sreekanth S. *et al*. Preliminary phytochemical and evaluation of galls of *quercus infectoria*, *International Journal of Research in Pharmaceutical and Nano Sciences*, 2(1), 2013, 101-106.