FORMULATION AND EVALUATION OF NANOSPONGES CONTAINING MURRAYA KOENIGII EXTRACT FOR BURN WOUND HEALING

Poonam Jadhav*1
1*Satara College of Pharmacy, Satara, Near MIDC, Maharashtra, India.

ABSTRACT
Murraya koenigii is a medium sized tree belonging to the family Rutaceae. The major constituents present in the Murraya koenigii leaves treat burns, bruises. Ayurveda is a traditional Indian medicinal system practiced for thousands of years. Natural remedies are more acceptable in the faith that they are safer with less side effects than the synthetic ones. The novel formulations are reported to have remarkable advantages over conventional formulations of plant actives and extracts which include enhancement of solubility, bioavailability, protection from toxicity, enhancement of pharmacological activity, enhancement of stability, improved tissue macrophages distribution, sustained delivery and protection from physical and chemical degradation. Our main purpose is to treat/heal wound at faster rate with minimum side effects. Nanosponges alone are difficult to use on local tissues because they diffuse away to other parts of the body very quickly so to overcome the drawback we combined nanosponges with the herbal extract of Murraya Koenigii. According to literature survey it was found that etanolic and aqueous extract shows good wound healing results. Research on curry leaves revealed that they are also effective in fighting bacterial and fungal infections. The leaf extracts from the plant have been comparable to popular main stream antibiotic drugs. During this research work, we prepared ethanolic extract of Murraya Koenigii leaves and prepared nanosponges from it for treating burn wound. The nanosponges are prepared by quasi emulsion solvent diffusion method. The prepared nanosponges were evaluated for various In-vitro parameters and the results obtained were satisfactory.

KEYWORDS
Nanosponges, Murraya koenigii, Wound and Solubility.

INTRODUCTION
The ideal delivery systems solubilize the drug; lead the drug to the target site to fulfill the individual need of the patient and disease stage. Nanosponges are versatile drug delivery system as it can load both hydrophilic and hydrophobic drugs. Nanosponges are solid, porous, biocompatible, tiny in size with 3 dimensional structures and nanomeric cavity size which have unique ability to entrap wide variety of drugs.
Nanosponges are a novel class of nanoparticles with nanostructured hyper branched polymers and few nanometers wide cavities in which a large variety of substances can be encapsulated. The nanosponges drug delivery platform is a network of specific polymers that slowly degrades and thus releases the chosen drug. The nanosponges can be synthesized to be of specific size and to release drugs over time by varying the proportion of cross-linker to polymer.

Now regarding its mechanism of drug release, the sponge particles contain an open structure and it contains the active ingredients which are free to move in and out from the particles and into the medium until equilibrium is reached. In case of topical drug delivery, once the finished product is applied to the target tissue, the active ingredient which is already present in the vehicle will be absorbed into it, depleting the vehicle, which will become unsaturated, hence disturbing the equilibrium.

This will lead to flow of the active drug ingredient from the sponge particles into the vehicle and from it to the target tissue until the vehicle is either dried/absorbed.

The term gel was introduced in late 1800. The USP defines gel as a semisolid system consisting of dispersion made up of either small inorganic particles or large organic molecules enclosed and interpenetrated by liquid.

A burn is a type of injury to skin caused by heat, electricity, light, radiation or friction. The wound healing process is a series of independent and overlapping stages. In these stages both cellular and matrix compounds work to reestablish the integrity of damaged tissues and replacement of lost tissues. These overlapping series are classified into 5 stages – Haemostasis, Inflammation, Migration, Proliferation and maturation.

MATERIAL AND EQUIPMENTS
The raw materials like drug, polymers, excipients and chemicals required for the present work were procured from different sources. Following materials were used for the formulation and evaluation of nanosponges and gel.

Preformulation studies

Characterization of Murraya koenigii extract

Organoleptic properties
Murraya Koenigii leaves extract was evaluated for its organoleptic properties such as colour, odour, and taste.

Determination of pH
The crude powder of Murraya Koenigii was dissolved in distilled water and was kept in water bath for 20 min, filtered and then pH of the filtrate was noted down with the help of pH meter.

Phytochemical tests performed

Determination of total ash
The total ash value of crude powder of Murraya Koenigii was determined by incinerating 2 g of accurately weighed crude powder in a silica crucible. It was incinerated in a muffle furnace at a temperature not exceeding 450º C until free from carbon, then cooled and weighed.

Determination of water soluble ash
The total ash obtained was boiled with 25 ml of distilled water for 5 min. The insoluble matter was collected on an ash less filter paper, washed with hot water and ignited to constant weight at allowed temperature. The weight of insoluble matter was subtracted from the weight of total ash. The difference in weight represents the water soluble ash. The percentage of water soluble ash with reference to the air dried drug was calculated.

Determination of acid insoluble ash
The ash obtained in the above method was boiled with 25 ml of dilute hydrochloric acid for 5 min. The residue was collected on ash less filter paper and washed with hot water, ignited, cooled and weighed. The percent of acid insoluble ash with reference to air dried drug was calculated.

Determination of loss on drying
The loss on drying was determined by weighing 2 g of crude powder of Murraya Koenigii in an evaporating dish and then dried in an oven at 105ºC till constant weight was obtained and loss on drying was calculated. The percent loss on drying was calculated on the basis of sample taken initially.
Determination of melting point
Melting point of Murraya Koenigii extract was determined by micro controlled based melting point apparatus. The sample was inserted in capillary having one end closed. Then the capillary was inserted in bath of silicone oil which was heated in controlled manner with the help of electric heating coil. The temperature at which bubble formation occurs was noted as melting temperature.

Calibration curve of Murraya Koenigii extract in Phosphate buffer pH 5.5
Accurately weighed 100 mg (0.1 gm) Murraya Koenigii extract was taken and transferred to 100 ml volumetric flask and volume was made to 100 ml with petroleum ether (Stock I). The 10ml solution from above stock I solution was again diluted with methanol and volume was made to 100 ml (Stock II). The final solutions of stock II were then prepared in methanol. From Stock II solution aliquots of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 ml were transferred to 10 ml volumetric flasks and final volume was made to 10ml with methanol in the concentration range of 10-100 µg/ml. The absorbance values of these solutions were measured at 239.5 nm using double beam UV spectrophotometer (Shimadzu, Pharmaspec UV-1700, Japan) against blank of methanol.

Drug – excipient compatibility studies
Visual observations
The samples subjected to drug-excipient compatibility studies were assessed for any visual changes. The samples were observed for change in colour and nature.

Infrared Spectroscopy
IR was determined by Fourier Transform infrared spectrophotometer (FTIR – 4100, Jasco, Japan).

Preparation of Blank Nanosponges
Blank nanosponges were prepared by Quasi – emulsion solvent diffusion method. The inner phase was prepared by dissolving Eudragit RS 100 in a suitable solvent i.e. dichloromethane. The inner phase was then poured into the polyvinyl alcohol solution in water (Outer Phase). Following 60 min of stirring (rpm 800-900), the mixture was filtered to separate the nanosponges. The nanosponges were dried in an air heated oven at 40°C for 12 h.

Preparation of drug loaded Nanosponges
Drug loaded nanosponges were prepared by Quasi - emulsion solvent diffusion method. The inner phase was prepared by dissolving Eudragit RS 100 in a suitable solvent i.e. dichloromethane. Then drug was added to solution and dissolved under ultrasonication at 35°C. The inner phase was then poured into the polyvinyl alcohol solution in water (Outer Phase). Following 60 min of stirring (rpm 800-900), the mixture was filtered to separate the Nanospnages. The Nanospnages were dried in an air heated oven at 40°C for 12 h.

Evaluation of Nanospnages
Visual inspection
The visual inspection of nanospnages was determined by optical or binocular microscopy.

Determination of production yield
The production yield of the nanospnages was determined by calculating accurately the initial weight of the raw materials and the final weight of the nanospnages obtained.

\[
\text{Production Yield (PY) = } \frac{\text{Practical mass of nanospnages}}{\text{Theoretical Mass (Polymer + Drug)}} \times 100 \text{ (Eq-1)}
\]

Actual drug content and Entrapment Efficiency
The actual drug content was determined by the amount of drug which was entrapped in nanospnages. The weighed amount of drug loaded nanospnages (50mg) was kept in 10 ml ethanol and soaked for 3 h. The samples were filtered and analyzed at 239.5nm against blank using UV spectrophotometer (Shimadzu, PharmaSpecUV-1700, Japan). Encapsulation efficiency was calculated by following formula:

\[
\text{Encapsulation efficiency (\%) = } \frac{\text{Total amount of drug} - \text{Free unentrapped drug} \times 100}{\text{Total amount of drug}} \text{ (Eq-2)}
\]

Differential Scanning Calorimetry (DSC)
Thermal analysis is an important evaluation technique to find any possible interaction between the drug and excipient. Such interaction can be identified by any change in thermogram.

Available online: www.uptodateresearchpublication.com

September – October 177
intercooler. Indium standard was used to calibrate the DSC temperature and enthalpy scale. The powder sample of nanosponges was kept in the aluminium pan and heated at constant rate of 5°C/min up to 300°C. Inert atmosphere was maintained by purging nitrogen at the flow rate of 10ml/min.

Scanning Electron microscopy
Scanning electron microscopy was used to study the microscopic aspects of the nanosponges. The morphology of nanosponges was carried out by using zeta sizer.

Particle size analysis
Particle size analysis of prepared nanosponges was carried out by using zeta sizer (Particulate system nano plus).

Zeta potential
Zeta potential of optimized nanosponges was measured by using zeta sizer at 25°C (Particulate system nano plus).

Formulation and evaluation of Murraya koenigii extract nanosponges gel

Preparation of Murraya koenigii extracts nanosponges gel:
1% Carbopol 934 was allowed to soak for 24 h in distilled water. On next day accurately weighed Murraya koenigii extract nanosponges were added to the gel base. Triethanolamine was added drop wise to the formulation for adjustment of required pH (5.5-5.6) and to obtain the gel in required consistency. Finally preservatives were added in the carbopol solution.

Physical appearance
The physical appearance of the formulation was checked visually.

Color
The color of the formulation was checked out against white and black background.

Consistency
The consistency was checked by applying on skin.

Odor
The odor of gel was checked by mixing the gel in water and taking the smell.

Determination of pH
The pH of gel was determined using digital pH meter by dipping the glass electrode completely into the gel system.

Determination of Spread ability
Spread ability was determined by modified wooden block and glass slide apparatus. The apparatus consisted of a wooden block with fixed glass and a pulley. A pan was attached to another glass slide (movable) with the help of a string. For the determination of Spread ability measured amount of gel was placed on the fixed glass slide. The movable glass slide with a pan attached to it, was placed on other fixed glass slide such that the gel was sandwiched between the two slides for 5 min. About 50gm of weight was added to the pan. Time taken for the slides to separate was noted. Spread ability was determined using formula:

\[S = \frac{M \cdot L}{T} \]

(S-3)

Determination of drug content
The drug content of gel formulation was determined by dissolving an accurately weighed quantity (1g) of gel in 100 ml of solvent (pH 5.5-5.6). The solutions were kept for stirring up to complete dissolution of the formulations. Solutions were filtered and were subjected to spectrophotometric analysis. The drug content was calculated from calibration data.

\[\text{Drug Content} = \frac{\text{Actual conc.}}{\text{Theoretical conc.}} \times 100 \]

(S-4)

In vitro drug release studies
Release of the Murraya koenigii extract from nanosponges incorporated in various gel formulations was measured through standard cellophane membrane using a Franz diffusion cell. Prior to study, cellophane membrane was soaked in diffusion medium for overnight, and then placed on the support screen of the diffusion cell assembly. Phosphate buffer pH 5.5 was used as the receptor medium and 1gm of the gel was placed on the donor side. All batches of Murraya koenigii extract (F1-F9) were used for diffusion study. At predetermined time intervals, 2ml of sample was withdrawn from the receptor compartment and replaced with same volume of phosphate buffer pH 5.5. The aliquots
were analyzed by UV spectrophotometer at 239.5 nm against PBS (pH 5.5).

In-vivo studies for burn wound healing activity by using suitable animal model:

Burn wound healing activity
- Animals: Wistar rats Male/Female (n=18)
- Weight: 200-300 g.
- Group I: Nanosponges gel containing Murraya koenigii extract.
- Group II: Standard (Silver sulphadiazine cream)
- Group III: Control (No treatment)

Procedure
Albino Wistar rats of either sex weighing 200-250 gm (3 months old) were randomly selected marked to permit individual identification and kept in their cages for at least 7 days prior to dosing to allow for acclimatization to the laboratory condition. Animals were not being deprived of food and water. The animals were divided into 3 groups of 6 animals each then dorsum of each rat was shaved. Immediately after the procedure anesthesia was given to animal. The burn was made by exposing the back skin to red hot beaker. The wounding day was considered as day 0. Prepared formulations were placed on the wound site. Average wound contraction was measured by a tracing paper on the wounded margin and calculated as percentage reduction in wound area. The wound contraction is calculated as percentage of the original wound size for each animal of a group. The percent of wound size induced was calculated by:

\[
\text{Percentage Wound Contraction (\%)} = \frac{\text{Initial Wound size-specific wound size}}{\text{initial wound size}} \times 100
\]

RESULTS AND DISCUSSION

Collection of plant material

Authentication of plant material
The authentication of seeds was done from department of Botany, Yashwantrao Chavan institute of Sciences Satara (Maharashtra) and it was confirmed that the procured leaves were of Murraya koenigii plant.

Extraction of Murraya koenigii leaves
Extract was obtained in sufficient quantity from the leaves of Murraya koenigii by soxhlet extraction method.

Preformulation study

Characterization of Murraya koenigii extract:

Organoleptic properties

Determination of pH

pH of the extract was found to be 6.7, while as per literature standard it is reported to be 6.3-6.4. As experimental values were in good agreement with official values, it could be concluded that procured extract was in pure form.

Phytochemical tests performed

Test for alkaloids

Dragendroff’s test

This test was performed which showed formation of orange brown precipitate that indicated the presence of alkaloids.

Hager’s test

This test was performed which showed formation of yellow precipitate that indicated the presence of alkaloids.

Test for glycoside

Molisch’s test

This test was performed which showed formation of violet ring at the junction of 2 liquids that indicated the presence of glycosides.

Test for Saponin

Foam test

This test was performed which showed foam formation that indicated the presence of saponin.

Test for proteins and amino acids

Millions test

This test was performed which showed formation of white precipitate. Warm the obtained precipitate which converted it into brick red colour that indicated the presence of proteins and amino acids.

Test for Triterpenoids

Liebermann bur chard test

This test was performed which showed formation of first red, and then blue and finally green colour indicated presence of Triterpenoids.
Test for flavonoids
Shinoda test
This test was performed which showed formation of red coloration that indicated presence of Flavinoids.

Determination of total ash
The total ash value of Murraya koenigii was found to be 12.5%, while as per literature standard it is 11.33%.

Determination of water soluble ash
The water soluble ash value was found to be 2%, while as per literature standard is 1.97%.

Determination of acid insoluble ash
The acid insoluble ash value was found to be 5%, while as per literature standard it is 5.33%.

Determination of loss on drying
The loss on drying was found to be 10.43 gm, while as per literature standard it is 10.06±0.15gm.

Determination of refractive index
The refractive index was found to be 1.5010, while as per literature standard it is 1.5021.

Determination of melting point
The melting point of Murraya koenigii was found to be 99ºC - 100ºC, while as per literature standard it is 98°C-100°C.

Determination of extractive values
Alcohol soluble extractives
The alcohol soluble extractive was found to be 7.2%, while as per literature standard it is reported to be 7.75%.

Water soluble extractive
The water soluble extractive was found to be 9.52%, while as per literature standard it is reported to be 9.56%.

Identification of Murraya koenigii extract
Ultraviolet spectroscopy
The λmax value of Murraya koenigii extract was found to be 239.5nm in phosphate buffer pH 5.5. This was in well compliance with the λmax value of Murraya koenigii extract in literature.

Calibration curve of Murraya koenigii extract in phosphate buffer pH 5.5
The calibration curve for Murraya Koenigii extract in phosphate buffer pH 5.5 was plotted by using following results of absorbance at various concentrations.

Drug - excipient compatibility studies
Visual observations
No notable change was observed in the sample on visual observation. There was no observable color change.

Infrared spectroscopy
FTIR spectrum of the mixture of Murraya koenigii extract and excipients was compared with spectra of individual components. An FTIR spectrum of physical mixture shows significant peaks of Murraya koenigii extract and respective excipient indicating no chemical interaction between Murraya koenigii extract and excipient.

Evaluations of Murraya koenigii extract nanospheres
Visual inspection
In this figure, the nanospheres were observed in the optical microscope. The nanospheres were spread on neubauer’s chamber; small cube contains two or three nanospheres. From the figure it could be concluded that the obtained product was in nano range. The binocular image of nanospheres also exhibited the small and spherical nanospheres.

Determination of Production Yield, Entrapment Efficiency and Actual Drug Content:
Production Yield, Entrapment Efficiency and Actual Drug Content was calculated
The % production yield of all batches was ranged from 19.38% to 88.78%, it was found that the production yield was greatly affected by polymer concentration as well as by concentration of polyvinyl alcohol.
Use of higher amount of PVA while preparing nanospheres at higher amount of polymers caused slightly an increased viscosity of the dispersed phase. When solvents from inner phase diffused out, nearly all of the dispersed phase was converted to the form of solid nanospheres and separated particles appeared and also it has given higher percent entrapment efficiency and % actual drug content.

Scanning electron microscopy
From SEM photographs, it was clear that the nanospheres so obtained were having the spherical shape and the spongy nature of the nanospheres.
was clearly evident, thus it could be concluded that the adopted method for the preparation of nanosponges was useful.

Particle size analysis
Particle size of nanosponges should be in the range of 5-500 nm. The visual inspection of all batches for particle size using optical and binocular microscope revealed that the particle size was increased with the increase in the Eudragit RS100 amount. This might be due to increasing polymer wall thickness which led to the larger size of nanosponges. The F6 batch possessed more percent of intact, uniform, spherical particles in optical microscopy; so the batch F6 was chosen for further analysis. A mean particle size of formulation F6 was found to be 55.2 nm.

Zeta potential
Highly negatively or highly positive zeta potential value indicates good physical stability of the formulation. The optimised nanosponge formulation of murraya koenigii was measured by using zetasizer at 25°C, it was found to be 27.11 and it indicate the formulation to be stable.

In vitro drug release studies
In vitro drug release study was carried out using phosphate buffer pH 5.5 using Franz diffusion cell, from the results it could be revealed that % CADD was founded and ranged between 62.14% to 82.16%. Formulation F6 gave better drug release than other formulations. The cumulative percent drug release (% CADD) for all formulations was calculated. It is given in table below

Evaluations of Murraya koenigii extract nanosponges gel

Physical appearance
The prepared gel formulations of Murraya koenigii leaves extract nanosponges were visually inspected for their colour, consistency and odour.
- Colour: Pale green
- Consistency: Good
- Odour: Aromatic

The values of spread ability of all prepared formulation were found to be in the range of 12.33±1.08 to 29.03±2.62 g.cm/sec and drug content ranges from 81.1 to 92.5. Hence, it indicates that spread ability and drug content of gel was good.

In vitro drug release studies
In vitro drug release study of gel was carried out using phosphate buffer pH 5.5 using Franz diffusion cell. From the results it could be concluded that % CADD of gel formulations gave better release. At the end of 8 h, the total amount of drug release from the formulation was found to be 82.16%.

Stability study
The stability studies of formulated gel were carried out at room temperature for one month. The effect of temperature, humidity and time on the physical characteristics of the gel was for assessing the stability of the prepared formulations. The stability studies were carried out when the room temperature was 25ºC. The Results were shown in Table No.32. Therefore no evidence of degradation of drug was observed.

DSC of formulated gel
In DSC thermogram of Murraya koenigii extract containing gel endothermic peak was observed at 105.26ºC. The DSC thermogram of drug and formulation compared with each other both shows endothermic peak. The study indicated that drug has not under go any chemical interaction with the polymer.

Data analysis of formulations
Traditional design of the pharmaceutical formulations are based on time consuming approach of changing one variable at a time which does not take into consideration the joint effect of independent variables. Thus, factorial design can serve as an essential tool to understand the complexity of the pharmaceutical formulations.
A 3^2 full factorial design was selected and the 2 factors were evaluated at 3 levels. The amount of Eudragit RS100 (A) and polyvinyl alcohol (B) were selected as independent variables and the dependent variables were % production yield, %CADD and % Entrapment efficiency. The data obtained was treated using Stat-Ease Design Expert software.
Table No.1: List of drug, Excipients, Polymer and Solvent

<table>
<thead>
<tr>
<th>S.No</th>
<th>Drug/Polymer/Excipients/Solvent</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leaves of Murraya Koenigii</td>
<td>Botanical garden of Satara College of Pharmacy, Satara</td>
</tr>
<tr>
<td>2</td>
<td>Eudragit RS100</td>
<td>Loba Chemie Pvt. Ltd., Mumbai</td>
</tr>
<tr>
<td>3</td>
<td>Polyvinyl alcohol</td>
<td>Loba Chemie Pvt. Ltd., Mumbai</td>
</tr>
<tr>
<td>4</td>
<td>Dichloromethane</td>
<td>S.D. Lab Chem. Mumbai</td>
</tr>
<tr>
<td>5</td>
<td>Ethanol</td>
<td>S.D. Lab Chem. Mumbai</td>
</tr>
<tr>
<td>6</td>
<td>Carbopol 934</td>
<td>Research –Lab Fine Chem. Industries, Mumbai</td>
</tr>
<tr>
<td>7</td>
<td>Methyl paraben</td>
<td>Loba Chemie Pvt. Ltd., Mumbai</td>
</tr>
<tr>
<td>8</td>
<td>Propyl paraben</td>
<td>Loba Chemie Pvt. Ltd., Mumbai</td>
</tr>
<tr>
<td>9</td>
<td>Triethanolamine</td>
<td>Research- Lab Fine Chem. Industries, Mumbai</td>
</tr>
</tbody>
</table>

Table No.2: Samples used in drug-excipient compatibility studies

<table>
<thead>
<tr>
<th>S.No</th>
<th>Pure sample</th>
<th>Drug + Excipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Murraya Koenigii extract</td>
<td>-----</td>
</tr>
<tr>
<td>2</td>
<td>Eudragit RS 100</td>
<td>Eudragit RS 100 + Extract</td>
</tr>
<tr>
<td>3</td>
<td>Polyvinyl alcohol</td>
<td>Polyvinyl alcohol + Extract</td>
</tr>
<tr>
<td>4</td>
<td>Carbopol 934</td>
<td>Carbopol 934 + Extract</td>
</tr>
</tbody>
</table>

Formulation of Nanosponges

Table No.3: Ingredients used for formulation of nanosponges of Murraya koenigii leaves extract

<table>
<thead>
<tr>
<th>S.No</th>
<th>Ingredients</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Murraya Koenigii extract</td>
<td>API</td>
</tr>
<tr>
<td>2</td>
<td>Eudragit RS 100</td>
<td>Polymer</td>
</tr>
<tr>
<td>3</td>
<td>Polyvinyl alcohol</td>
<td>Stabilizer</td>
</tr>
<tr>
<td>4</td>
<td>Dichloromethane</td>
<td>Solvent</td>
</tr>
<tr>
<td>5</td>
<td>Distilled water</td>
<td>Vehicle</td>
</tr>
</tbody>
</table>

Full Factorial design

Table No.4: Full factorial experimental design layout

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Formulation code</th>
<th>Coded values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>F1</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>F2</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>F3</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>F4</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>F5</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>F6</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>F7</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>F8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F9</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>
Table No.5: Design Summary

<table>
<thead>
<tr>
<th>S.No</th>
<th>Factor</th>
<th>Name</th>
<th>Unit</th>
<th>Type</th>
<th>Coded level</th>
<th>Actual level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>Eudragit RS100</td>
<td>gm</td>
<td>Numerical</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Polyvinyl alcohol</td>
<td>gm</td>
<td>Numerical</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table No.6: Composition of blank nanosponeges

<table>
<thead>
<tr>
<th>S.No</th>
<th>Batch no</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drug (gm)</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>Eudragit Rs 100(gm)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>Dichloromethane (ml)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Polyvinyl alcohol (gm)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>Distilled water (ml)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table No.7: Composition of drug loaded Nanosponeges

<table>
<thead>
<tr>
<th>S.No</th>
<th>Batch no</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drug (gm)</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>Eudragit Rs 100(gm)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>Dichloromethane (ml)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Polyvinyl alcohol (gm)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>Distilled water (ml)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table No.8: Composition of Gel containing Nanosponeges of Murraya koenigii extract

<table>
<thead>
<tr>
<th>S.No</th>
<th>Batches</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nanosponeges eq. to 100mg drug</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>Methyl paraben(g)</td>
<td>0.015</td>
<td>0.020</td>
<td>0.025</td>
<td>0.015</td>
<td>0.020</td>
<td>0.025</td>
<td>0.015</td>
<td>0.020</td>
<td>0.025</td>
</tr>
<tr>
<td>3</td>
<td>Propyl paraben(g)</td>
<td>0.05</td>
<td>0.010</td>
<td>0.015</td>
<td>0.05</td>
<td>0.010</td>
<td>0.015</td>
<td>0.05</td>
<td>0.010</td>
<td>0.015</td>
</tr>
<tr>
<td>4</td>
<td>Triethanolamine(ml)</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
</tr>
<tr>
<td>5</td>
<td>Carbopol 934(gm)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>Distilled water (ml)</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
<td>q.s</td>
</tr>
</tbody>
</table>

Table No.9: Phytochemical tests

<table>
<thead>
<tr>
<th>S.No</th>
<th>Constituents</th>
<th>Tests</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>1. Dragendroff’s test</td>
<td>Present</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Hager’s test</td>
<td>Present</td>
</tr>
<tr>
<td>2</td>
<td>Protein</td>
<td>Millions test</td>
<td>Present</td>
</tr>
<tr>
<td>3</td>
<td>Saponin test</td>
<td>Foam test</td>
<td>Present</td>
</tr>
<tr>
<td>4</td>
<td>Glycoside</td>
<td>Molisch’s test</td>
<td>Present</td>
</tr>
<tr>
<td>5</td>
<td>Protein</td>
<td>Millions test</td>
<td>Present</td>
</tr>
<tr>
<td>6</td>
<td>Triterpenoids</td>
<td>Liberman burchard test</td>
<td>Present</td>
</tr>
<tr>
<td>7</td>
<td>Flavonoids</td>
<td>Shinoda test</td>
<td>Present</td>
</tr>
<tr>
<td>8</td>
<td>Terpenoids</td>
<td>Noller’s test</td>
<td>Present</td>
</tr>
</tbody>
</table>
Table No.10: Absorbance of Murraya koenigii extract in phosphate buffer pH 5.5

<table>
<thead>
<tr>
<th>S.No</th>
<th>Concentrations (µg/ml)</th>
<th>Absorbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.0794</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>0.176</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>0.330</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>0.472</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>0.5721</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>0.7021</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>0.7237</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>0.9212</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>1.0419</td>
</tr>
</tbody>
</table>

Table No.11: Production Yield, Entrapment Efficiency and Actual Drug Content of Murraya koenigii extract nanosponges

<table>
<thead>
<tr>
<th>Batches</th>
<th>Amount of Eu RS 100 (g)</th>
<th>Amount of PVA (g)</th>
<th>Theoretical yield (g)</th>
<th>Practical yield (g)</th>
<th>Production yield (%)</th>
<th>Entrapment efficiency (%)</th>
<th>Actual drug content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0.5</td>
<td>0.25</td>
<td>0.95</td>
<td>0.4122</td>
<td>43.38</td>
<td>67.7</td>
<td>67.7</td>
</tr>
<tr>
<td>F2</td>
<td>1</td>
<td>0.25</td>
<td>1.45</td>
<td>0.7393</td>
<td>50.98</td>
<td>77.8</td>
<td>77.8</td>
</tr>
<tr>
<td>F3</td>
<td>1.5</td>
<td>0.25</td>
<td>1.95</td>
<td>1.7314</td>
<td>29.65</td>
<td>77.3</td>
<td>77.3</td>
</tr>
<tr>
<td>F4</td>
<td>0.5</td>
<td>0.5</td>
<td>1.2</td>
<td>0.3662</td>
<td>30.51</td>
<td>66.8</td>
<td>66.8</td>
</tr>
<tr>
<td>F5</td>
<td>1</td>
<td>0.5</td>
<td>1.7</td>
<td>0.7512</td>
<td>44.18</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>F6</td>
<td>1.5</td>
<td>0.5</td>
<td>2.2</td>
<td>0.6523</td>
<td>88.78</td>
<td>86.6</td>
<td>86.6</td>
</tr>
<tr>
<td>F7</td>
<td>0.5</td>
<td>0.75</td>
<td>1.45</td>
<td>0.7465</td>
<td>51.48</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>F8</td>
<td>1</td>
<td>0.75</td>
<td>1.95</td>
<td>0.3780</td>
<td>19.38</td>
<td>45.1</td>
<td>45.1</td>
</tr>
<tr>
<td>F9</td>
<td>1.5</td>
<td>0.75</td>
<td>2.45</td>
<td>1.1010</td>
<td>44.93</td>
<td>77.5</td>
<td>77.5</td>
</tr>
</tbody>
</table>

Table No.12: The cumulative percent drug release of all formulations

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>% CADD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>15.38</td>
</tr>
<tr>
<td>2</td>
<td>28.35</td>
</tr>
<tr>
<td>3</td>
<td>32.54</td>
</tr>
<tr>
<td>4</td>
<td>42.30</td>
</tr>
<tr>
<td>5</td>
<td>45.76</td>
</tr>
<tr>
<td>6</td>
<td>52.37</td>
</tr>
<tr>
<td>7</td>
<td>62.55</td>
</tr>
<tr>
<td>8</td>
<td>68.63</td>
</tr>
</tbody>
</table>
Determination of pH

<table>
<thead>
<tr>
<th>S.No</th>
<th>Batches</th>
<th>pH</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F1</td>
<td>5.22</td>
<td>5.22</td>
</tr>
<tr>
<td>2</td>
<td>F2</td>
<td>6.22</td>
<td>6.22</td>
</tr>
<tr>
<td>3</td>
<td>F3</td>
<td>5.29</td>
<td>5.32</td>
</tr>
<tr>
<td>4</td>
<td>F4</td>
<td>5.89</td>
<td>5.92</td>
</tr>
<tr>
<td>5</td>
<td>F5</td>
<td>5.62</td>
<td>5.60</td>
</tr>
<tr>
<td>6</td>
<td>F6</td>
<td>5.28</td>
<td>5.27</td>
</tr>
<tr>
<td>7</td>
<td>F7</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td>8</td>
<td>F8</td>
<td>6.67</td>
<td>6.67</td>
</tr>
<tr>
<td>9</td>
<td>F9</td>
<td>5.76</td>
<td>5.74</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5.28</td>
<td>5.25</td>
</tr>
</tbody>
</table>

Spread ability and Drug Content

<table>
<thead>
<tr>
<th>Batches</th>
<th>Spread ability</th>
<th>Std. Deviation</th>
<th>Drug content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>20</td>
<td>20.65</td>
<td>19</td>
</tr>
<tr>
<td>F2</td>
<td>29.16</td>
<td>25</td>
<td>27.77</td>
</tr>
<tr>
<td>F3</td>
<td>13.33</td>
<td>11.17</td>
<td>12.33±1.08</td>
</tr>
<tr>
<td>F4</td>
<td>22.36</td>
<td>19.31</td>
<td>21.22±1.66</td>
</tr>
<tr>
<td>F5</td>
<td>24.82</td>
<td>22</td>
<td>19.15±5.48</td>
</tr>
<tr>
<td>F6</td>
<td>16.30</td>
<td>14.81</td>
<td>14.99±1.22</td>
</tr>
<tr>
<td>F7</td>
<td>29.41</td>
<td>26.25</td>
<td>29.03±2.62</td>
</tr>
<tr>
<td>F8</td>
<td>18.4</td>
<td>17.96</td>
<td>19.18±1.74</td>
</tr>
<tr>
<td>F9</td>
<td>27.77</td>
<td>21.59</td>
<td>24.78±3.09</td>
</tr>
</tbody>
</table>

Table No.15: % CADD of optimized formulation

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>CADD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>27.42</td>
</tr>
<tr>
<td>2</td>
<td>37.35</td>
</tr>
<tr>
<td>3</td>
<td>41.47</td>
</tr>
<tr>
<td>4</td>
<td>59.14</td>
</tr>
<tr>
<td>5</td>
<td>62.42</td>
</tr>
<tr>
<td>6</td>
<td>69.55</td>
</tr>
<tr>
<td>7</td>
<td>75.21</td>
</tr>
<tr>
<td>8</td>
<td>82.16</td>
</tr>
</tbody>
</table>

Table No.16: Appearance, pH and homogeneity of formulation

<table>
<thead>
<tr>
<th>Time interval (days)</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Pale green 5.20 Very good</td>
</tr>
<tr>
<td>7</td>
<td>Pale green 5.20 Very good</td>
</tr>
<tr>
<td>15</td>
<td>Pale green 5.36 Good</td>
</tr>
<tr>
<td>30</td>
<td>Pale green 5.38 Good</td>
</tr>
</tbody>
</table>
Table No.17: Design Summary

<table>
<thead>
<tr>
<th>S.No</th>
<th>Factor</th>
<th>Name</th>
<th>Unit</th>
<th>Type</th>
<th>Coded level</th>
<th>Actual level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low Medium High</td>
<td>Low Medium High</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>Eudragit RS100</td>
<td>gm</td>
<td>Numerical</td>
<td>-1 0 +1</td>
<td>0.5 1 1.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Polyvinyl alcohol</td>
<td>gm</td>
<td>Numerical</td>
<td>-1 0 +1</td>
<td>0.25 0.5 0.75</td>
</tr>
</tbody>
</table>

Table No.18: Response Summary

<table>
<thead>
<tr>
<th>S.No</th>
<th>Response</th>
<th>Name</th>
<th>Unit</th>
<th>Observations</th>
<th>Analysis</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M1</td>
<td>Entrapment efficiency</td>
<td>%</td>
<td>9</td>
<td>Polynomial</td>
<td>45.1</td>
<td>86.6</td>
</tr>
<tr>
<td>2</td>
<td>M2</td>
<td>CADD</td>
<td>%</td>
<td>9</td>
<td>Polynomial</td>
<td>27.42</td>
<td>82.10</td>
</tr>
<tr>
<td>3</td>
<td>M3</td>
<td>PY</td>
<td>%</td>
<td>9</td>
<td>Polynomial</td>
<td>19.38</td>
<td>88.78</td>
</tr>
</tbody>
</table>

Table No.19: The responses of all formulations (F1-F9)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Responses</th>
<th>A</th>
<th>B</th>
<th>CADD (%)</th>
<th>EE (%)</th>
<th>%PY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F1</td>
<td>+1</td>
<td>0</td>
<td>68.63</td>
<td>67.7</td>
<td>43.38</td>
</tr>
<tr>
<td>2</td>
<td>F2</td>
<td>0</td>
<td>+1</td>
<td>81.46</td>
<td>77.8</td>
<td>50.98</td>
</tr>
<tr>
<td>3</td>
<td>F3</td>
<td>-1</td>
<td>-1</td>
<td>80.16</td>
<td>77.3</td>
<td>29.65</td>
</tr>
<tr>
<td>4</td>
<td>F4</td>
<td>+1</td>
<td>-1</td>
<td>72.32</td>
<td>66.8</td>
<td>30.51</td>
</tr>
<tr>
<td>5</td>
<td>F5</td>
<td>-1</td>
<td>0</td>
<td>69.16</td>
<td>53</td>
<td>44.18</td>
</tr>
<tr>
<td>6</td>
<td>F6</td>
<td>-1</td>
<td>+1</td>
<td>82.16</td>
<td>86.6</td>
<td>88.78</td>
</tr>
<tr>
<td>7</td>
<td>F7</td>
<td>+1</td>
<td>+1</td>
<td>62.14</td>
<td>52</td>
<td>51.48</td>
</tr>
<tr>
<td>8</td>
<td>F8</td>
<td>0</td>
<td>0</td>
<td>79.12</td>
<td>75.1</td>
<td>19.38</td>
</tr>
<tr>
<td>9</td>
<td>F9</td>
<td>0</td>
<td>-1</td>
<td>68.32</td>
<td>77.5</td>
<td>44.93</td>
</tr>
</tbody>
</table>

In-vivo burn wound healing

Weight of animals after creating burn wound

Table No.20: Weight of animals after creating burn wound

<table>
<thead>
<tr>
<th>S.No</th>
<th>Time (days)</th>
<th>Group 1 (Test)</th>
<th>Group 2 (Standard)</th>
<th>Group 3 (Control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>262.5±26.22</td>
<td>225±22.36</td>
<td>220.83±36.79</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>266.66±30.27</td>
<td>212.5±26.22</td>
<td>237.5±26.22</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>287.5±26.22</td>
<td>250±15.81</td>
<td>212.5±26.22</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>241.66±20.41</td>
<td>212.5±26.22</td>
<td>220.83±36.79</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>250±15.81</td>
<td>225±22.36</td>
<td>233.33±20.41</td>
</tr>
</tbody>
</table>

Surface area of burn wound

Table No.21: Surface area of burn wound

<table>
<thead>
<tr>
<th>S.No</th>
<th>Time (days)</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10.89±2.088</td>
<td>9.216±1.114</td>
<td>11.75±1.665</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>9.142±1.579</td>
<td>7.738±0.999</td>
<td>10.14±1.659</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>7.411±1.019</td>
<td>5.878±1.987</td>
<td>8.588±1.424</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>5.79±1.289</td>
<td>3.615±1.717</td>
<td>5.015±2.245</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>0.859±0.499</td>
<td>1.000±0.839</td>
<td>1.734±1.172</td>
</tr>
</tbody>
</table>
Table No.22: % of burn wound contraction

<table>
<thead>
<tr>
<th>S.No</th>
<th>Time (days)</th>
<th>Group 1 (Test)</th>
<th>Group 2(Std)</th>
<th>Group 3 (Control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>15.611±7.203</td>
<td>15.72±8.292</td>
<td>13.86±4.140</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>30.56±19.11</td>
<td>32.42±20.506</td>
<td>26.96±5.303</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>47.87±19.105</td>
<td>46.235±10.848</td>
<td>35.57±2.106</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>89.56±8.434</td>
<td>85.106±9.196</td>
<td>78.24±9.916</td>
</tr>
</tbody>
</table>

a. Shaved animal
b. 0th day wound
1st day wound

![Burn Wound](image)

Figure No.1: Burn Wound

![Soxhlet extraction of leaves](image)

Figure No.2: Soxhlet extraction of leaves of plant and extract of leaves

![UV spectrum](image)

Figure No.3: UV spectrum of Murraya koenigii extract in phosphate buffer pH 5.5
Infrared spectroscopy

![FTIR spectrum of Murraya koenigii extract](Image)

Figure No.4: FTIR spectrum of Murraya koenigii extract

DSC

![DSC of Murraya koenigii dried powder](Image)

In DSC thermogram of Murraya koenigii dried powder, an endothermic peak was observed at 75.82°C.

![DSC Thermogram of Murraya koenigii extract](Image)

In DSC thermogram of Murraya koenigii extract, an endothermic peak was observed at 130.40°C.

Available online: www.uptodateresearchpublication.com

September – October
Figure No.7: Calibration curve of Murraya koenigii extract in phosphate buffer pH 5.5

Figure No.8: FTIR spectrum of Murraya koenigii

Figure No.9: FTIR spectrum of Eudragit RS100

Figure No.10: IR spectra of Physical mixture of Murraya koenigii extract and Eudragit RS100

Figure No.11: Calibration curve of Murraya koenigii extract in phosphate buffer pH 5.5.
Figure 14: IR spectra of physical mixture of Murraya koenigii extract and Carbopol 934

Figure 12: IR spectra of physical mixture of Murraya koenigii extract and PVA

Figure 13: IR spectra of Carbopol 934
Figure No.15: Optical and Binocular microscope images of nanosponges

Figure No.16: Percent production yield of nanosponges

Figure No.17: Percent Entrapment efficiency of nanosponges

Figure No.18: Percent Actual drug content of nanosponges
Figure No.19: SEM of Nanosponges of Murraya Koenigii extract

Figure No.20: Particle size of nanosponges

Figure No.21: Zeta Potential of nanosponges
Figure No.22: In vitro diffusion study of formulations F1-F3

Figure No.23: In vitro diffusion study of formulations F4-F6

Figure No.24: In vitro diffusion study of formulations F7-F9
Infra red spectroscopy

Blank nanosponges

![Figure No.25: The IR Spectrum of blank nanosponge](image1)

Drug containing nanosponges

![Figure No.26: The IR spectrum of drug containing nanosponges](image2)

Differential scanning Calorimetry (DSC)

![Figure No.27: DSC of drug loaded nanosponges](image3)
Figure No.28: DSC of Murraya koenigii containing gel

Figure No.29: Weight of animals after creating burn wound

Figure No.30: Surface area of burn wound
Figure No.31: % of burn wound contraction

Day ‘0’

Day ‘7’

Day ‘14’

Day ‘21’

Available online: www.uptodateresearchpublication.com September – October
CONCLUSION
Burn wound injuries to the skin result in loss of its protective function as a barrier to the microorganism leading to the high risk of infection. Thus burn wound patient face high morbidity than mortality because of the large uncovered burns getting infected; healing of wound takes place long period of dressing, leading to deformities and contractures. Managing burn injuries properly is important because they are painful and can cause disabling scarring, exclusion of affected parts or even death in severe cases. Problems such as infection, electrolyte imbalance, shock and respiratory suffering may occur. Herbal drugs have gained more popularity during last decade throughout the world. It had been used by 80% of population in developing countries. Herbal drug contains many phytoconstituents and some of them are important active phytoconstituents. These herbals when formulated should contain similar quantity of these constituents as that of original herb. Nanosponges are mesh like structure and due to their small size and porous nature. They can easily bind poorly water soluble drug. The F6 batch showed very fine, spherical and free flowing nanosponges. By formulating nanosponges we got free flowing drug loaded nanosponges. Further Nanosponges having Murraya koenigii implemented in gel and In-vivo activity was checked. It was concluded that prepared formulation F6 showed significant burn wound healing activity.

ACKNOWLEDGEMENT
We, the authors, very much greatful to Dr. N.H. Aloorkar (Principal, Satara College of Pharmacy, Satara), Dr. A.S. Kulkarni (Vice- Principal, Satara College of Pharmacy, Satara), Dr. S. H. Mujumdar (H.O.D., Dept. of Pharmaceutics, Satara College of Pharmacy, Satara), Dr. S.S. Gilda (H.O.D., Department of QAT, Satara College of Pharmacy, Satara) for their valuable guidance and technical suggestion and also for their support to make this article with full of information in every aspect.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

REFERENCES
22. Malwal M and Sarin R. Antimicrobial efficacy of Murraya koenigii (Linn.) Spreng. root

