Review Article CODEN: IJRPJK ISSN: 2319 – 9563

International Journal of Research in Pharmaceutical and Nano Sciences

Journal homepage: www.ijrpns.com

https://doi.org/10.36673/IJRPNS.2025.v14.i03.A10

MARINE DRUG: ALZHEIMER'S DISEASE THERAPEUTICS AGENTS: A REVIEW

Shivanshu Kushwaha*1, Navneet Kumar Verma1, Shekhar Singh1

^{1*}Suyash Institute of Pharmacy, Hakkabad, Gorakhpur, Uttar Pradesh, India.

ABSTRACT

Alzheimer's disease (AD), a neurodegenerative disease, is one of the most difficult illnesses to treat among the elderly. Clinically manifested as various impairments in memory, language, cognition, visuospatial skills, executive function and so on, the symptoms progressively worsened over time. The drugs currently in clinical use can slow the progression of Alzheimer's disease and alleviate symptoms, but they cannot cure it completely. The drugs are primarily acetylcholinesterase inhibitors (AChEIs) and noncompetitive N-methyl-D-aspartate receptor (NDMAR) antagonists. Although the pathogenesis of Alzheimer's disease is unknown, it is frequently linked to beta-amyloid expression. Previous, current, and future drug development for the disease has focused on abnormal amyloid deposition and hyperphosphorylation of tau protein in the brain. Researchers are currently focusing increasingly on the extraction of natural compounds that may be effective against Alzheimer's disease and other neurodegenerative disorders. Marine natural products have been shown to be the most promising candidates among these compounds, with some exhibiting significant neuroprotective properties. Consequently, we aim to elucidate the potential effects of bioactive compounds derived from marine organisms, including polysaccharides, carotenoids, polyphenols, sterols and alkaloids, as drug candidates, to facilitate the discovery of novel and efficacious therapeutic agents effective against Alzheimer's disease.

KEYWORDS

Alzheimer's disease, Neurodegenerative disease, Therapeutic, Pathogenesis and Marine natural products.

Author for Correspondence:

Shivanshu Kushwaha, Suyash Institute of Pharmacy, Hakkabad, Gorakhpur, Uttar Pradesh, India.

Email: shivanshukushwaha012@gmail.com

Available online: www.uptodateresearchpublication.com

INTRODUCTION

Alzheimer's disease (AD) is widely recognized as the predominant cause of dementia, predominantly affecting older adults^{1,2}. AD is characterized by behavioral disturbances, neuronal death, memory loss, cognitive deficits, and cholinergic dysfunction. The pathogenesis of Alzheimer's disease involves intricate processes and a deficiency in the neural pathways related to memory function³. Early-onset Alzheimer's disease has been identified in

May – June 89

individuals aged over 65 years. Nonetheless, over 90% of diagnosed cases are associated with lateonset Alzheimer's Disease, typically observed in individuals over 65 years old⁴. Conversely, the presenilin 1 (PSEN1) mutation (P117L) is associated with familial Alzheimer's disease (FAD) and may result in mortality as early as 28 years of age⁵. Numerous genetic mutations, specifically in the genes for amyloid precursor protein (APP), PSEN1, and preselinin 2 (PSEN2), have been linked to the development of AD at an early age⁶. About 5-10% of cases of early-onset AD that are diagnosed may have dysregulated expression of these genes^{4,6}. In fact, both early-onset and late-onset AD are significantly influenced by polymorphic alleles of apolipoprotein E (APOE)^{7,8}. Furthermore, during normal aging, the presence of APOE4 alleles is associated with an increased risk of age-associated cognitive deficit and cerebral amyloid angiopathy⁹. Intracellular neurofibrillary tangles (NFTs), extracellular amyloid plaques, and nerve cell death are the main neuropathological characteristics of AD¹⁰⁻¹⁴. The amyloidogenic pathway and the nonamyloidogenic pathway are the two pathways through which sequential APP cleavage occurs¹⁵. Amyloid beta (AB), which is produced by the amyloidogenic APP cleavage, is the building block of amyloid plagues. This pathway produces AB by cleaving APP via β-secretase (BACE1) and then γsecretase¹⁴. An association between FAD mutations and an elevated Aβ42/40 ratio has been found 16,17. suggesting that elevated Aβ42 levels (in comparison to Aβ40) are important in the pathophysiology of AD, potentially by serving as the core for AB assembly into amyloidogenic plaques, fibrils, and oligomers 18,19. Aß accumulation may occur in the elderly as a result of altered APP cleavage. According to reports, non-amyloidogenic APP processing may be decreased by excessive agelinked acetylation of the α -secretase gene²⁰. Amyloidogenic APP processing was found to be elevated in early AD brain tissue due to increased BACE1 activity 21,22 . A β monomers gradually aggregate into oligomers, insoluble amyloid plaques, and fibrils¹⁰.

Available online: www.uptodateresearchpublication.com

The histopathological hallmark of AD is NFTs, which are made of hyperphosphorylated tau²³. Under typical circumstances, tau can mediate microtubule stabilization. On the other hand, tau can form tangles composed of paired helical filaments when it is hyperphosphorylated¹¹. According to the amyloid cascade hypothesis, Aß buildup can mediate the intracellular environment for the formation of NFTs by dysregulating neuronal and synaptic function, ultimately leading neuronal loss and further decline in neurotransmitter activity¹⁰. Marine organisms are used to extract pharmacologically active substances, which are then transformed into forms that humans can use. In fact, the ocean is a reservoir of many bioactive compounds, but the ocean remains relatively unexploited ²⁴⁻²⁷. It was revealed through the isolation of soft corals that marine-organisms can be an important source for novel drugs containing novel chemical structures and an increased level of therapeutic value. Moreover, the marine ecosystem is a significant source for discovering effective therapeutic agents, and marine organisms are associated with half of the Earth's biodiversity^{28,29}. The occurrence of new infections, metabolic disorders, and the increased rate of lifestyle and aging- associated diseases suggest that there is value in the constant exploration for more effective and highly selective drugs, utilizing both modern and traditional methods for designing and developing novel drugs. Microorganisms, invertebrates, and algae are rich sources of several important drugs³⁰. Large research areas for the extraction of bioactive compounds from seas and oceans have been made possible by modern technologies³¹. Numerous marine-derived secondary metabolites with substantial therapeutic potential have already been found in a variety of sessile marine invertebrates, such as sponges, bryozoans and tunicates. The discovery of several new metabolites, such as bryostatin, indicates that the ocean is a rich source of many significant therapeutic candidates^{32,33}. One to two hours after the start of infusion, bryostatin concentrations peaked in a phase IIa clinical trial³⁴. Within an hour

of the infusion beginning, the blood's maximum bryostatin levels were accompanied by an increase in the concentration of PBMC protein kinase C epsilon (PKCE). Additionally, bryostatin was found improve Mini-Mental State Examination (MMSE) scores. Additionally, bryostatin was found to be well tolerated and no adverse drug reactions were reported in AD patients. Furthermore, research on animals showed that bryostatine increased levels of brain-derived neurotrophic factor (BDNF), postsynaptic density protein 95 (PSD-95) and effective PKCE. initiation. All of these results pointed to bryostatin 1 as a successful treatment for AD³⁵. The medications made from marine organisms that may be helpful in treating AD are the main topic of this review. Additionally, we provide an overview of the therapeutic agents currently used to treat AD.

Facts and features of Alzheimer's disease

The World Health Organization (WHO) has identified Alzheimer's disease (AD) as a global health priority³⁶. It is anticipated that by 2050, there will be roughly one million new cases of AD annually, with a new case being diagnosed every 33 seconds³⁷. is believed It that neurodegenerative disease, begins years before its symptoms, which include language and memory loss, manifest. The degeneration or injury of neurons involved in cognitive function is linked to the onset of the symptoms. Walking and swallowing are two abilities that become impossible as AD worsens, necessitating 24-hour care³⁸. Known risk factors for AD include advanced age, family history, the genotype of the apolipoprotein E (APOE) & allele, lifestyle, psychosocial factors, cardiovascular disease risk factors and illiteracy³⁸. The presence of intracellular neurofibrillary tangles (NFT), extracellular amyloid plaques and nerve cell death, which results in brain atrophy, are the hallmarks of AD^{38,39}. β-Amyloid (Aβ) plaques may contribute to cell death by interfering with the communication at synapses between neurons, while NFTs block the transport of nutrients and other essential molecules within neurons³⁸. Amyloid precursor protein (APP) cleavage produces AB

Available online: www.uptodateresearchpublication.com

peptides, which make up the majority of amyloid plaques. Three secretases can cleave APP through two different metabolic pathways: the amyloidogenic and the non-amyloiddogenic pathways (Figure No.1). The non-amyloidogenic pathway, The enzymes that are involved are αsecretase and γ-secretase. α-secretase first cleaves APP, producing a soluble fragment called α-APP and a smaller peptide that is 83 amino acids (a.a.) long. y-secretase then cleaves the smaller peptide into two non-amyloidogenic peptides. Because the cleavage takes place at the fragment's N-terminus, the second pathway is the one that produces AB peptides. When APP is broken down by β-secretase (BACE-1), two fragments are produced: β-APP, a soluble fragment, and a longer 99 a.a. peptide, which is subsequently broken down by γ- secretase into different lengths of amylogenic peptides, such as A β 40, A β 42, and A β 43⁴⁰.

NFTs are formed from hyperphosphorylated tau protein, a protein that stabilizes the microtubules but which, when hyperphosphorylated, accumulates into tangles^{38,41}. The main enzyme involved in the process is glycogen synthase kinase 3β (GSK-3β) and its inhibition can lead to a reduction in tau hyperphosphorylation. GSK-3β can be inhibited by protein kinase C (PKC), which is stimulated by muscarinic receptor 1 (M1) agonists such as acetylcholine⁴⁰. The presence of toxic Aβ peptides and tau proteins causes an immune system response that activates microglia. These cells try to eliminate the toxic compounds, and when the production is higher than the clearance, inflammation occurs³⁸. An abnormal increase in the production of reactive oxygen species (ROS) leads to oxidative stress, which is another major contributor to development of AD. The presence of certain metal ions, such as aluminum (Al3+), iron (Fe2+), copper (Cu2+), zinc (Zn2+) and mercury (Hg2+), and mitochondrial dysfunction, also contribute to the pathogenesis of AD⁴². Recently, studies in mice investigating the possibility that Aß peptide from the intestinal microbiome might be a trigger leading to AD opened a new avenue of research in this area^{43,44}. Therefore, AD can be caused by several

mechanisms, leading to the possibility of being treated by different pathways, which are outlined in Figure No.2⁴⁵.

Current Drug Therapy for Alzheimer's

There are currently only five approved medications used to treat AD in the United States, despite the fact that the number of AD patients is increasing⁴⁶. An antagonist of the N-methylD-aspartate receptor (memantine) and cholinesterase inhibitors (rivastigmine, galantamine, and donepezil) are part of four of the five standard-of-care treatments for AD in the European Union^{39,47-49}. Unfortunately, there are currently no medications that can stop or change the progression of AD; instead, they only temporarily alleviate the symptoms of AD in a small percentage of patients 50,51. Tacrine, which was the first FDA-approved medication in 1993, is no longer in use because of liver toxicity. In 1996, the FDA approved donepezil. The FDA approved galantamine in 2004 and memantine in 2003⁵². The FDA finally approved rivastigmine in 2006⁵³ and the fifth therapeutic option, which consists of a fixed-dose combination of memantine donepezil, was approved in 2014 to treat patients with moderate-severe AD who were receiving a stable therapy with donepezil⁵⁴⁻⁵⁶. Most of the drug candidates under development have failed over the past 15 years, but there is still no effective drug that can cure AD, despite growing knowledge of the disease's complexity, its various pathogenetic modes, and the dynamic interaction between the constituents that cause AD⁵⁷. Additionally, encouraging results from vaccination trials in transgenic animal models have prompted the development of immunotherapeutic agents for the treatment of AD⁵⁸. Numerous monoclonal and polyclonal antibodies have been created to combat Aβ, and they are presently undergoing clinical testing. There is hope for additional AD medication development thanks to novel experimental techniques like intrabodies, antibodies recognize particular conformational epitopes and antibodies⁵⁹. single-chain variable fragment Therefore, more research is needed to develop novel and effective anti-AD therapeutic molecules, taking into account the complex nature of AD.

Potential Therapeutic Uses of Anti-Alzheimer's Molecules Derived from Marine Sources Bryostatin-1

The marine invertebrate Buculaneritina is the source of the macrocyclic lactone bryostatin 1⁶⁰. It has nanomolar potency for PKC1ε and α isotypes and is a strong activator of members of the protein kinase C family. Moreover, bryostatin 1 mediates PKC activation, which causes the central nervous system to produce and release more BDNF, a synaptic growth factor linked to memory and learning⁶¹. Additionally, bryostatin 1 activates the amyloid precursor protein's non-amyloidogenic α-secretase processing pathway⁶². In AD transgenic mouse preclinical research models, showed intraperitoneal bryostatin 1 administration activates PKCε in the brain and inhibits Aβ accumulation, synaptic loss and memory deficit⁶³. Additionally, in rodent models of Fragile X syndrome and stroke as well as aged rat models, bryostatin 1 mediates synaptic preservation and improves memory^{64,65}. Additionally, bryostatin taken orally has been shown to improve memory and learning in an AD mouse model⁶⁶. In a mouse model of multiple sclerosis, bryostatin also improves the antiinflammatory immune response and neurological decline⁶⁷.

Clinical Proof

A single intravenous administration of bryostatin increased the Mini-Mental State Examination (MMSE) score of six AD individuals compared to three placebo-receiving individuals, according to a phase II clinical study⁶⁸. In fact, bryostatin was found to be well tolerated in these AD patients, and no notable side effects were noted. After an hour of infusion, peak blood levels of bryostatin were found, along with elevated peripheral blood mononuclear cells (PKC) levels. Long-term bryostatin treatment caused PKC down regulation. That depended on the dosage levels and length of treatment. The administration of maximum doses (25μg/m2) for five or six consecutive weeks resulted in a significant down regulation of PKCg⁶⁸.

Additionally, this study suggested that bryostatin could be a useful medication option for treating AD. In another phase II clinical study, bryostatin was used to treat cognitive function loss in 150 patients with advanced AD. It demonstrated better efficacy, tolerability, and safety. Remarkably, the full analysis set (FAS) did not yield any significant primary endpoints. Nevertheless, the bryostatin (20µg)-treated group outperformed the placebo group in pre-specified and post hoc exploratory analyses, as well as primary and secondary analyses in the completer analysis set (CAS). All of these results point to the need for additional clinical research to ascertain the effectiveness of bryostatin (20µg) in the treatment of AD⁶⁹. In June 2018, a separate phase II study involving 108 patients was initiated. Figure No.1. Mechanism of action of different bioactive compounds derived from marine sources in Alzheimer's disease. DHA stands for docosahexaenoic acid; GSK3ß for glycogen synthase kinase 3 beta; nAChR for nicotinic acetylcholine receptor; NFTs for neurofibrillary tangles; NF-κB for nuclear factor-kappa B; PKC for protein kinase C; ROS for reactive oxygen species; and Aß for amyloid beta. 3.1.2. Evidence from Clinical Practice Α single intravenous administration of bryostatin increased the Mini-Mental State Examination (MMSE) score of six AD individuals compared to three placebo-receiving individuals, according to a phase II clinical study³⁴. In fact, bryostatin was found to be well tolerated in these AD patients, and no notable side effects were noted. After an hour of infusion, peak blood bryostatin concentrations were found along with elevated PKCε levels in peripheral mononuclear cells. Prolonged bryostatin treatment caused PKCsdownregulation, which depended on the dosage and length of treatment. When maximum doses (25µg/m2) were given for five or six weeks in a row, a significant downregulation of PKCE was seen⁶⁸. Additionally, this study suggested that bryostatin could be a useful medication option for treating AD. In another phase II clinical study, bryostatin was used to treat cognitive function loss in 150 patients with advanced AD. It demonstrated

Available online: www.uptodateresearchpublication.com

better efficacy, tolerability and safety⁶⁹. Remarkably, in the entire analysis set, no significant primary endpoint was reached.

(FAS) Nevertheless, the bryostatin (20µg)-treated group outperformed the placebo group in prespecified and post hoc exploratory analyses, as well as primary and secondary analyses in the completer analysis set (CAS). All of these results point to the need for additional clinical research to ascertain the effectiveness of bryostatin (20µg) in the treatment of AD⁶⁹. In June 2018, 108 AD patients who were not on memantine participated in a separate phase II trial. According to their MMSE scores, patients in that study were split into two groups: those with scores between 10 and 15 and those with scores between 4 and 9. These groups were then randomly assigned to receive bryostatin (20µg) or a placebo. Over the course of twelve weeks, a total of seven doses were given⁷⁰. Unfortunately, this study's findings were unsatisfactory.

Preclinical Evidence for Homotaurine

Numerous species of red marine algae contain the natural amino acid homotaurine (tramiprosate)⁷¹. Despite having an extra carbon in its chain, this compound is comparable to taurine. Preclinical research has shown that tramiprosate reduces the production of Aß oligomers and the accumulation of amyloid fibrils as plaques in a mouse model of AD. Treatment with trimiprosate decreased the amount of soluble amyloid proteins and the amount of amyloid plagues that formed in the brain⁷². Plasma levels of AB decreased in a dose-dependent manner, which further implies that tramiprosate may have a role in brain AB transport or metabolism⁷³. Tramiprosate mediates the polymerization of tau in fibrillar aggregates, according to a preclinical study; however, in neuronal cell cultures, these tau aggregates had no harmful effects. Furthermore, tramiprosate mediated the reduction of tau-actin complexes that might be harmful to cells rather than affecting tau's ability to bind with microtubules⁷³.

Clinical Proof

Tramiprosate has been shown in a phase II clinical trial to safely lower $A\beta42$ levels in the

cerebrospinal fluid (CSF) of people with mild-tomoderate AD. Indeed, these decreased levels of Aβ42 reported in CSF and long-term clinical observations, which suggests a role for tramiprosate in disease modification. Additionally, tramiprosate was found to be safe and well tolerated after three months of treatment⁷⁴. The results of this study were inexplicably inconsistent, despite the fact that trimiprosate did not show any discernible differences in the later phase III study (Alphase study)⁷⁵. Additionally, taking into account the distribution of the ApoE4 allele, a pooled analysis of the two phase III trials conducted among 2025 mild-to-moderate AD patients showed that homozygote individuals (who received 150mg twice a day) had significant differences in their ADAS-cog scores and a positive trend in their Clinical Dementia Rating Scale Sum of Boxes scores (CDR-SB). It's interesting to note that APOE4 heterozygotes demonstrated an intermediate level of efficacy, while non-APOE4 individuals showed no clinical benefits⁷⁶. The homozygote individuals, who were at the mildest clinical stage of the disease, exhibited the greatest efficacies, according to subsequent re-analyses of these data (MMSE, 22-26). When compared to the placebo group, tramiprosate showed advantages in those individuals' disability assessment for dementia (DAD), CDR-SB, and ADAS-cog. While functional (DAD) and cognitive (ADAS-cog) effects increased over time, cognitive stabilization was observed in ADAS-cog over 78 weeks⁷⁷.

Anabaseine and Its Substance Preclinical Evidence for GTS-21

Nemertines, a phylum of carnivores (especially marineworms), produce the alkaloid toxin anabaseine (3, 4, 5, 6-Tetrahydro-2, 3'-bipyridine)⁷⁸. It has been discovered that the synthetic anabaseine derivative GTS-21 functions as a partialagonist in neural nicotinic acetylcholine receptors⁷⁹. Anabaseine can, in fact, function as a potent agonist at the level of muscle alpha-bungarotoxin-sensitive nicotinic receptors and neurons⁸⁰.

Ionotropic cholinergic receptors that are sensitive to nicotine activation are known as nicotinic

Available online: www.uptodateresearchpublication.com

acetylcholine receptors (nAChRs). In addition to strongly activating α7 subtypes, GTS-21 can bind to both α 7 and α 4 β 2 subtypes 81. The hippocampus and the pre- and frontal cortex are the primary brain regions where α7 nAChR is expressed. Important cognitive processes like judgment, language, orientation, calculation, learning capacity, comprehension, thinking, and memory are also linked to α 7-nAChR. It was discovered that A β inhibits or activates the α7-nAChR in a manner that is dependent on AB concentration. Additionally, tauvia activation of α7-nAChR is phosphorylated by Aβ oligomers. Thus, agonists of α7-nAChR and/or positive allosteric modulators of α7-nAChR may be useful in treating AD^{82} .

Clinical Evidence

The effects, pharmacokinetics, tolerability, and safety of GTS-21 on cognitive functions in healthy male subjects have been established by Kitagawa, et al⁸³. A total of 18 subjects were randomized to receive either placebo or GTS-21 at doses of 150, 75, or 25mg (three times a day for the first four days, once on the fifth day) for three five-day sessions. At doses up to 450 mg/day, GTS-21 was found to be well-tolerated and to have no clinically significant safety issues. The area under the plasma drug concentration and Cmax of GTS-21 and its metabolite, 4-OH-GTS-21, increased in a dosedependent manner, but there was a significant intersubjective variability that decreased with continuous dosin, encompassing working memory, attention, and episodic secondary memory, in contrast to a placebo. Furthermore, a correlation between the degree of the cognitive response and GTS-21 exposure was noted, with doses ranging from 150 to 75 mg three times a day approaching a maximum effect. All of these results point to the potential efficacy of GTS-21 as a novel dementia treatment⁸³.

Preclinical Evidence for Rifampicin

The broad-spectrum antibiotic rifamycin was originally isolated from the Gram-positive bacterial species Amycolatopsis. Additionally, Salinispora, a marine bacterium, is isolated from Pseudoceratinaclavata, a marine sponge, to yield

rifamycin⁸⁴. Apart from its typical anti-infectious properties, rifampicin has demonstrated significant neuroprotective effects in a number of studies. Additionally, it lessens neuroinflammation and free radical damage, which further produces notable neuroprotective effects (Table No.1)⁸⁵. production of Aβ is also significantly influenced by the generation of free radicals⁸⁶. Antioxidants have already demonstrated therapeutic efficacy in treating Aß plaque-associated neurotoxicity in AD in a number of studies. According to the study by Tomiyama et al⁸⁷, rifampicin prevents neurotoxic effects in pheochromocytoma PC12 rat cells and inhibits fibril formation and aggregation of synthetic Aβ1-40 in a dose-dependent manner. It discovered that rifampicin suppressed Aβaggregation 10-100 times more effectively than vitamins. A different study found that while the lipophilicity of rifampicin's sana-chain is important for drug transport into the brain in vivo, it is not necessary for suppressing $A\beta$ aggregation⁸⁸. Numerous in vitro investigations have demonstrated the anti-amyloid properties of rifampicin, including the inhibition of the formation of amyloid fibrils⁸⁹. The observed suppressive activity was mediated by rifampicin binding with peptide fibrils rather than their potential intracellular antioxidant effect, according to several studies that also assessed the anti-amyloid activity of rifampicin aggregation of amylin fibrin and related toxicity⁹⁰. According to Umeda et al, study, rifampicin significantly reduces the accumulation of tau oligomers and A\beta in a variety of transgenic mouse models. After a month of treatment, rifampicin dramatically reduced tau and amyloid toxicity, which was associated with improved microglial activation and synapse loss. In addition, rifampicin ameliorated memory loss and suppressed apoptotic pathways, such as by activating caspase 3 and releasing cytochrome c in the hippocampus. Autophagy-lysosomal activity was also restored by rifampicin. The results indicated that rifampicin exhibits significant inhibitory effects on apoptotic microglial activation. pathways, hyperphosphorylation of tau and accumulation of

Available online: www.uptodateresearchpublication.com

tau and $A\beta$ oligomers, all of which are positively correlated with neurocognitive outcomes, despite some minor variations in $A\beta$ deposition in different transgenic mouse models (such as AD, amyloid oligomers and tauopathy model)⁹¹.

Clinical Proof

In contrast with preclinical results, only a small number of clinical studies have assessed the activity, efficacy and outcomes ofrifampicin in AD patients. Namba et al⁹² examined 16 brains from leprosy patients without dementia and compared the senile plaques and neurofibrillary tangles using immunohistochemical staining in 140 elderly Japanese volunteers who were not dementiaafflicted. According to their research, elderly nondemented leprosy patients who were given rifampicin showed an unusual lack of senile plaques in their brains when compared to age-matched controls⁹². Regretfully, these results have not been confirmed in later research, which implies that rifampicin has no effect on the prevalence of AD in leprosy patients⁹³. Although follow-up studies were intended to demonstrate the causal anti-dementia action of rifampicin, they were unable to produce definitive clinical results. Loeb et al⁹⁴ showed that rifampicin (oral administration of 300 mg/day for three months) had anti-dementia effects in 101 patients with mild-to-moderate AD. A standardized ADAS-Cog (SADAS-cog) score was used to measure cognitive function, and the results showed significant improvement. However, auspicious findings could not be confirmed in a study involving a rifampicin treatment for 12 months⁹⁵.

In another study, Iizuka et al⁹⁶ showed that the preventive activity of rifampicin requires a minimum dose of 450 mg/day for one year, even for the period of predementia. These authors also revealed in a retrospective fluorodeoxyglucose (FDG)-positron emission tomography (PET) study that a treatment with rifampicin markedly ameliorated cognitive and metabolic (posterior cingulate gyrus) deficits at the predementia stage in the long-term follow up. Rifampicin treatment significantly improved the uptake of FDG in the

posterior cingulate gyrus region at a dose of 450mg/day for more than a year, and this was also evident in the MMSE scores.

Preclinical Evidence for Dictyostatin

The Maldivian marine sponge, Spongia sp., was the source of the first extraction of dictyostatin, a marine-derived macrolide⁹⁷. According to reports, AD patients have abnormally high tau levels⁹⁸. Makani et al⁹⁹ used a PS19 tau Tg mouse model to estimate the effectiveness of dictyostatin. In comparison to vehicle-treated PS19 mouse models, dictyostatin-treated PS19 mouse models were found to exhibit improved microtubule density, reduced axonal dystrophy, a lower level of tau pathology, and a propensity for an increased survival rate of hippocampus neurons⁹⁹. The idea that microtubulestabilizing molecules might be useful in treating AD was supported by the practical positive results observed on the brain effect in aged PS19 mouse models treated with dictyostatin.

Clinical Proof

The effects of doxycycline and rifampicin were assessed in a clinical trial involving 101 patients with probable AD and mild-to-moderate dementia⁹⁷. According to that study, rifampicin and doxycycline treatment may be helpful for mild-to-moderate AD patients.

Another clinical study was also conducted to refute or confirm these findings¹⁰⁰. When compared to a placebo, SADAScog showed a noticeable decline over time when taking doxycycline and rifampicin. When compared to a placebo, there was no statistically significant decline or deterioration overall (n = 305). Additionally, neither rifampicin nor doxycycline significantly affected the Clinical Dementia Rating Scale SumofBoxes scores (CDR-SB). Secondary outcomes also showed similar trends. According to the study's findings, treating AD patients with rifampicin or doxycycline for a year, either separately or in combination, had no positive effects on function or cognition¹⁰⁰.

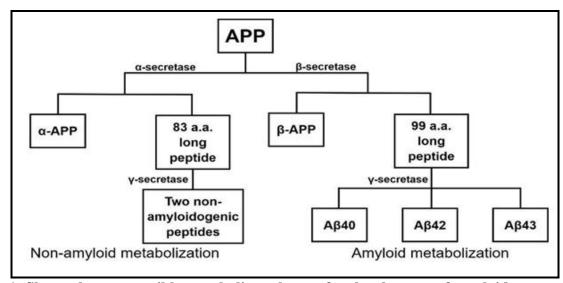


Figure No.1: Shows the two possible metabolic pathways for the cleavage of amyloid precursor protein (APP): nonamyloid metabolism and amyloid metabolism modified⁴⁰

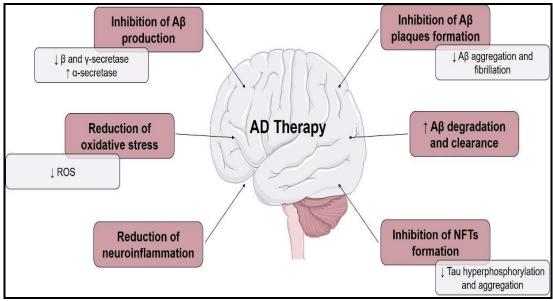


Figure No.2: Various approaches to treating Alzheimer's disease (AD). Up and down arrows, respectively, indicate increase and decrease, modified from 45

CONCLUSION

Novel, safe and effective treatments for AD are Marine organism-derived desperately needed. natural products have the potential to be a great source for expanding the pharmaceutical pipeline. In numerous in vitro and in vivo investigations, a variety of novel compounds originating from marine organisms have demonstrated noteworthy effects against the pathogenesis of AD. According to research, there are many compounds in nature that can be used to treat AD. Thanks to technological advancements in sample harvesting, product purification and characterization, it is now possible to create effective bioactive compounds from marine sources. Therefore, in order to create new and efficient therapeutic agents to treat AD, more research on marine organisms is needed.

ACKNOWLEDGMENT

The authors wish to express their sincere gratitude to Suyash Institute of Pharmacy, Hakkabad, Gorakhpur, Uttar Pradesh, India for providing necessary facilities to carry out this review work.

CONFLICT OF INTEREST

We declare that we have no conflict of interest.

Available online: www.uptodateresearchpublication.com

REFERENCES

- 1. Paris D, Bachmeier C, Reed J, Ait-Ghezala G, Bishop A, Chao J, Mathura V, Crawford F, Mullan M. Anatabine lowers Alzheimer's Aβ production *in vitro* and *in vivo*, *Eur. J. Pharmacol*, 670(2-3), 2011, 384-391.
- 2. Uddin M S, Najda A, Bin-Jumah M N, El-Seedi H R. Revisiting the amyloid cascade hypothesis: Anti-Aβ therapeutics to auspicious new ways for alzheimer's disease, *Int. J. Mol. Sci.*, 21(16), 2020, 5858.
- 3. Uddin M S, Amran M S, Ashraf G M. Deciphering the interacting mechanisms of circadian disruption and Alzheimer's disease, *Neurochem. Res.*, 46(7), 2021, 1603-1617.
- 4. Isik A T. Late onset Alzheimer's disease in older people, *Clin. Interv. Aging*, 5, 2010, 307-311.
- 5. Wisniewski T, Kulczycki J, Lojkowska W, Wegiel J, Wisniewski H M, Frangione B. A novel polish presenilin-1 mutation (P117L) is associated with familial Alzheimer's disease and leads to death as early as the age of 28 years, *Neuroreport*, 9(2), 1998, 217-221.

- 6. Bekris L M, Yu C E, Bird T D, Tsuang D W. Genetics of Alzheimer disease, *J. Geriatr. Psychiatry Neurol*, 23(4), 2010, 213-227.
- 7. Yamazaki Y, Painter M M, Bu G, Kanekiyo T. Apo lipoprotein E as a therapeutic target in Alzheimer's disease: A review of basic research and clinical evidence, *CNS Drugs*, 30(9), 2016, 773-789.
- 8. Al Mamun A, Sahab Uddin M, Fahim Bin Bashar M, Zaman S, Begum Y, Jahan Bulbul I, Siddiqul Islam M, Shahid Sarwar M, Mathew B, Shah Amran M. Molecular Insight into the therapeutic promise of targeting APOE4 for Alzheimer's disease, *Oxid. Med. Cell. Longev*, 2020, 2020, 5086250.
- 9. Liu C C, Kanekiyo T, Xu H, Bu G. Apolipoproteine and Alzheimer disease: Risk, mechanisms and therapy, *Nat. Rev. Neurol*, 9(2), 2013, 106-118.
- 10. Selkoe D J, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years, *EMBO Mol. Med*, 8(6), 2016, 595-608.
- 11. Iqbal K, Del C, Alonso A, Chen S, Chohan M O, El-Akkad E, Gong C X, Khatoon S, Li B, Liu F, *et al.* Tau pathologyin Alzheimer disease and other tauopathies, *Biochim. Biophys. Acta Mol. Basis Dis*, 1739(2-3), 2005, 198-210.
- 12. Mufson E J, Counts S E, Perez S E, Ginsberg S D. Cholinergic system during the progression of Alzheimer's disease: Therapeutic implications, *Expert Rev. Neurother*, 8(11), 2008, 1703-1718.
- 13. Uddin M S, Al Mamun A, Ashraf G M. Neurotoxic Aβ: Linking extracellular and intracellular Aβ in Alzheimer's disease, *Curr. Protein Pept. Sci*, 22(6), 2021, 442-448.
- 14. Yan R, Vassar R. Targeting the β secretase BACE1 for Alzheimer's disease therapy, *Lancet Neurol*, 13(3), 2014, 319-329.
- 15. Pajak B, Kania E, Orzechowski A. Killing Me Softly: Connotations to unfolded protein response and oxidative stress in Alzheimer's disease, *Oxid. Med. Cell. Longev*, 2016, 1805304.

- 16. Borchelt D R, Thinakaran G, Eckman C B, Lee M K, Davenport F, Ratovitsky T, Prada C M, Kim G, Seekins S, Yager D, *et al.* Familial Alzheimer's disease-linked presenilin I variants elevate aβ1- 42/1-40 ratio *in vitro* and *in vivo*, *Neuron*, 17(5), 1996, 1005-1013.
- 17. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird T D, Hardy J, Hutton M, Kukull W. Secreted amyloid β–protein similar to that in the senile plaques of Alzheimer's disease is increased *in vivo* by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease, *Nat. Med*, 2(8), 1996, 864-870.
- 18. Jarrett J T, Berger E P, Lansbury P T. The carboxy terminus of the β Amyloid proteinis critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease, *Biochemistry*, 32(18), 1993, 4693-4697.
- 19. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43), *Neuron*, 13(1), 1994, 45-53.
- 20. Donmez G, Wang D, Cohen D E, Guarente L. SIRT1 Suppresses β- Amyloid production by activating the α-Secretase gene ADAM10, *Cell*, 142(2), 2010, 320-332.
- 21. Holsinger R M D, McLean C A, Beyreuther K, Masters C L, Evin G. Increased expression of the amyloid precursor β-secretase in Alzheimer's disease, *Ann. Neurol*, 51(6), 2002, 783-786.
- 22. Yang L B, Lindholm K, Yan R, Citron M, Xia W, Yang X L, Beach T, Sue L, Wong P. Price D, *et al.* Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease, *Nat. Med*, 9(1), 2003, 3-4.
- 23. Mamun A, Uddin M, Mathew B, Ashraf G. Toxic tau: Structural origins of tau aggregation in Alzheimer's disease, *Neural Regen. Res*, 15(8), 2020, 1417.

- 24. Martins A, Vieira H, Gaspar H, Santos S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success, *Mar. Drugs*, 12(12), 2014, 1066-1101.
- 25. Lindequist U. Marine-derived pharmaceuticals-Challenges and opportunities, *Biomol. Ther*, 24(6), 2016, 561-571.
- 26. Malve H. Exploring the ocean for new drug developments: Marine pharmacology, *J. Pharm. Bioallied Sci*, 8(2), 2016, 83-91.
- 27. Bahbah E I, Albadrani G M, Abdel-Daim M M, Uddin M S, Simal-Gandara J. Molecular mechanisms of astaxanthin as a potential neurotherapeutic agent, *Mar. Drugs*, 19(4), 2021, 201.
- 28. Kong D X, Jiang Y Y, Zhang H Y. Marine natural products as sources of novel scaffolds: Achievement and concern, *Drug Discov. Today*, 15(21-22), 2010, 884-886.
- 29. Liu L, Zheng Y Y, Shao C L, Wang C Y. Metabolites from marine invertebrates and their symbiotic microorganisms: Molecular diversity discovery, mining and application, *Mar. Life Sci. Technol*, 1, 2019, 60-94.
- 30. Nii-Trebi N I. Emerging and neglected infectious diseases: Insights, advances and challenges, *Bio Med Res. Int*, 2017, 5245021.
- 31. Jha R K, Zi-rong, X. Biomedical compounds from marine organisms, *Mar. Drugs*, 2(3), 2004, 123-146.
- 32. Petersen L E, Schupp P J. Secondary metabolites of marine microbes: from natural products chemistry to chemical ecology, YOUMARES 9-The Oceans: Our research, our future: Proceedings of the 2018 conference for young marine researcher in oldenburg, *Springer Nature, Berlin, Germany*, 2020, 159-180.
- 33. Tian X R, Tang H F, Hu J J, Huang L L, Gustafson K R. Review of bioactive secondary metabolites from marine bryozoans in the progress of new drugs discovery, *Future Med. Chem*, 10(12), 2018, 1497-1514.

- 34. Nelson T J, Sun M K, Lim C, Sen A, Khan T, Chirila F V, Alkon D L. Bryostatin effects on cognitive function and PKCin Alzheimer's disease phase IIa and expanded access trials, *J. Alzheimers Dis*, 58(2), 2017, 521-535.
- 35. Cummings J L, Zhong K. Alzheimer's disease drug- develop mentpipeline: Few candidates, frequent failures, *Alzheimer's Res. Ther*, 6(4), 2014, 37.
- 36. Lane C A, Hardy J, Schott J M. Alzheimer's disease, *Eur. J. Neurol*, 25(1), 2018, 59-70.
- 37. Kumar A, Singh A, Ekavali. A review on Alzheimer's disease pathophysiology and its management: An update, *Ph arm. Rep*, 67(2), 2015, 195-203.
- 38. Alzheimer's Association. Alzheimer's disease facts and figures, *Alzheimer Dem Ent*, 15, 2019, 321-387.
- 39. Cummings J L, Tong G, Ballard C. Treatment combinations for Alzheimer's disease: Current and future pharmacotherapy options, *J. Alzheimer Dis. Jad*, 67(3), 2019, 779-794.
- 40. Coman H, Nemes B. New therapeutic targets in Alzheimer's disease, *Int.J. Gerontol*, 11(1), 2017, 2-6.
- 41. Fish P V, Steadman D, Bayle E D, Whiting P. New approaches for the treatment of Alzheimer's disease, *Bioorgan. Med. Chem. Lett*, 29(2), 2019, 125-133.
- 42. Islam M A, Alam F, Khalil D, Kamal M, Gan S. Alzheimer's disease and natural products: Future regimens emerging from nature, *Curr. Top. Med. Chem*, 17(12), 2017, 1408-1428.
- 43. Honarpisheh P, Putluri N, Bhattacharjee M B, Urayama A, Mc Cullough L D, Ganesh B P. Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-β in Tg2576 mice, *Int. J. Mol. Sci*, 21(5), 2020, 1711.
- 44. Dos Santos Guilherme M, Todorov H, Osterhof C, Mollerke A, Cub K, Hankeln T, Gerber S, Endres K. Impact of acute and chronic amyloid-β peptide exposure on gut microbial commensals in the mouse, *Front. Microbiol*, 11, 2020, 1008.

- 45. Andrade S, Ramalho M J, Loureiro J A, Pereira M D C. Natural compounds for Alzheimer's disease therapy: A systematic review of preclinical and clinical studies, *Int. J. Mol. Sci*, 20(9), 2019, 2313.
- 46. Cummings J L, Morstorf T, Zhong K. Alzheimer's disease drug-development pipeline: Few candidates, frequent failures, *Alzheimer's Res. Ther*, 6(4), 2014, 37.
- 47. Tayeb H O, Yang H D, Price B H, Tarazi F I. Pharmacotherapies for Alzheimer's disease: Beyond cholinesterase inhibitors, *Pharmacol. Ther*, 134(1), 2012, 8-25.
- 48. Dekker M J H J, Bouvy J C, O'Rourke D, Thompson R, Makady A, Jonsson P, Gispen-De Wied C C. Alignment of european regulatory and health technology assessments: A review of licensed products for Alzheimer's disease, *Front. Med*, 6, 2019, 73.
- 49. Kabir M T, Uddin M S, Begum M M, Thangapandiyan S, Rahman M S, Aleya L, Mathew B, Ahmed M, Ashraf G M, Barreto G E. Cholinesterase Inhibitors for Alzheimer's disease: Multitargeting strategy based on anti- Alzheimer's drugs repositioning, *Curr. Pharm. Des*, 25(33), 2019, 3519-3535.
- 50. Colovic M B, Krstic D Z, Lazarevic-Pasti T D, Bondzic A M, Vasic V M. Acetylcholinesterase Inhibitors: Pharmacology and toxicology, *Curr. Neuropharmacol*, 11(3), 2013, 315-335.
- 51. Rolinski M, Fox C, Maidment I, Mcshane R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson's disease dementia and cognitive impairment in Parkinson's disease, *Cochrane Database Syst. Rev*, 2012(3), 2012, CD006504.
- 52. Kabir M T, Abu Sufian M, Uddin M S, Begum M M, Akhter S, Islam A, Mathew B, Islam M S, Amran M S, Md Ashraf G. NMDA receptor antagonists: Repositioning of memantine as multitargeting agent for Alzheimer's therapy, *Curr. Pharm. Des*, 25(33), 2019, 3506-3518.

- 53. Russo P, Kisialiou A, Lamonaca P, Moroni R, Prinzi G, Fini M. New drugs from marine organisms in Alzheimer's disease, *Mar. Drugs*, 14(1), 2016, 5.
- 54. Deardorff W J, Grossberg G T. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer's disease, *Drug Des. Dev. Ther*, 10, 2016, 3267-3279.
- 55. Kabir M T, Uddin M S, Mamun A A, Jeandet P, Aleya L, Mansouri R A, Ashraf G M, Mathew B, Bin-Jumah M N, Abdel-Daim M M. Combination drug therapy for the management of Alzheimer's disease, *Int. J. Mol. Sci.*, 21(9), 2020, 3272.
- 56. Uddin M S, Al Mamun A, Kabir M T, Ashraf G M, Bin-Jumah M N, Abdel-Daim M M. Multi-target drug candidates for multifactorial Alzheimer's disease: AChE and NMDAR as molecular targets, *Mol. Neurobiol*, 58(1), 2021, 281-303.
- 57. Mizuno S, Iijima R, Ogishima S, Kikuchi M, Matsuoka Y, Ghosh S, Miyamoto T, Miyashita A, Kuwano R, Tanaka H. AlzPathway: A comprehensive map of signaling pathways of Alzheimer's disease, *BMC Syst. Biol*, 6, 2012, 52.
- 58. Kabir M T, Uddin M S, Mathew B, Das P K, Perveen A, Ashraf G M. Emerging promise of immunotherapy for Alzheimer's disease: A new hope for the development of Alzheimer's vaccine, *Curr. Top. Med. Chem*, 20(13), 2020, 1214-1234.
- 59. Pul R, Dodel R, Stangel M. Antibody-based therapy in Alzheimer's disease, *Expert Opin. Biol. Ther*, 11(3), 2011, 343-357.
- 60. Trindade-Silva A E, Lim-Fong G E, Sharp K H, Haygood M G. Bryostatins: Biological context and biotechnological prospects, *Curr. Opin. Biotechnol*, 21(6), 2010, 834-842.
- 61. Sun M K, Nelson T J, Alkon D L. Towards universal therapeutics for memory disorders, *Trends Phar macol. Sci*, 36(6), 2015, 384-394.

- 62. Yi P, Schrott L, Castor T P, Alexander J S. Bryostatin-1 vs. TPPB: Dose- dependent APP processing and PKC-α, -δ and -ε Isoform activation in SH- SY5Y neuronal cells, *J. Mol. Neurosci*, 48(1), 2012, 234-244.
- 63. Etcheberrigaray R, Tan M, Dewachtert I, Kuiperi C, Van Der Auwera I, Wera S, Qiao L, Bank B, Nelson T J, Kozikowski A P, *et al.* Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice, *Proc. Natl. Acad. Sci. USA*, 101(30), 2004, 11141-11146.
- 64. Hongpaisan J, Xu C, Sen A, Nelson T J, Alkon D L. PKC activation during training restores mushroom spine synapses and memory in the aged rat, *Neurobiol. Dis*, 55, 2013, 44-62.
- 65. Sun M K, Hongpaisan J, Nelson T J, Alkon D L. Post stroke neuronal rescue and synaptogenesis mediated *in vivo* by protein kinase C in adult brains, *Proc. Natl. Acad. Sci. USA*, 105(36), 2008, 13620-13625.
- 66. Schrott L M, Jackson K, Yi P, Dietz F, Johnson G S, Basting T F, Purdum G, Tyler T, Rios J D, Castor T P, *et al.* Acute oral bryostatin-1 administration improves learning deficits in the APP/PS1 transgenic mouse model of Alzheimer's disease, *Curr. Alzheimer Res*, 12(1), 2015, 22-31.
- 67. Kornberg M D, Smith M D, Shirazi H A, Calabresi P A, Snyder S H, Kim P M. Bryostatin-1 alleviates experimental multiple sclerosis, *Proc. Natl. Acad. Sci. USA*, 115(9), 2018, 2186-2191.
- 68. Nelson T J, Sun M K, Lim C, Sen A, Khan T, Chirila F V, Alkon D L. Bryostatin effects on cognitive function and PKCin Alzheimer's disease phase IIa and expanded access trials, *J. Alzheimers Dis*, 58(2), 2017, 521-535.
- 69. Farlow M R, Thompson R E, Wei L J, Tuchman A J, Grenier E, Crockford D, Wilke S, Benison J, Alkon D L, Moreira P. A randomized, double-blind, placebocontrolled, phase II study assessing safety, tolerability and efficacy of bryostatin in the

- treatment of moderately severe to severe Alzheimer's disease, *J. Alzheimers Dis*, 67(2), 2019, 555-570.
- 70. A study of bryostatin in moderately severe to severe alzheimers disease subjects not on memantine, *Clinical Trials.Gov*, 2021.
- 71. Tsolaki M. Future strategies of management of Alzheimer's disease, The role of homotaurine, *Hell. J. Nucl. Med*, 22, 2019, 82-94.
- 72. Gervais F, Paquette J, Morissette C, Krzywkowski P, Yu, M, Azzi M, Lacombe D, Kong X, Aman A, Laurin J, *et al.* Targeting soluble Aβ peptide with tramiprosate for the treatment of brain amyloidosis, *Neurobiol. Aging*, 28(4), 2007, 537-547.
- 73. Santa-Maria I, Hernandez F, Del Rio J, Moreno F J, Avila J. Tramiprosate, a drug of potential interest for the treatment of Alzheimer's disease, promotes an abnormal aggregation of tau, *Mol. Neurodegener*, 2, 2007.
- 74. Aisen P S, Saumier D, Briand R, Laurin J, Gervais F, Tremblay P, Garceau D. A Phase II study targeting amyloid-β with 3APS in mild-to-moderate Alzheimer disease, *Neurology*, 67(10), 2006, 1757-1763.
- 75. Aisen P S, Gauthier S, Ferris S H, Saumier D, Haine D, Garceau D, Duong A, Suhy J, Oh J, Lau W C, *et al.* Tramiprosate in mild-to-moderate Alzheimer's disease-A randomized, double-blind, placebo-controlled, multicentre study(the alphase study), *Arch. Med. Sci*, 7(1), 2011, 102-111.
- 76. Abushakra S, Hey J A, Power A, Hendrix S, Wang P, Shen L, *et al.* Clinical benefits of tramiprosate in Alzheimer's disease are associated with higher number of APOE4 alleles: The "APOE4 gene-dose effect, *J. Prev. Alzheimers Dis*, 3(4), 2016, 219-228.
- 77. Sabbagh M N. Clinical effects of oral tramiprosate in apoe4/4 homozygous patients with mild Alzheimer's disease suggest disease modification, *J. Prev. Alzheimers Dis*, 4(3), 2017, 136-137.

- 78. Kem W, Soti F, Wildeboer K, LeFrancois S, MacDougall K, Wei D Q, Chou K C, Arias H R. The nemertine toxin anabaseine and its derivative DMXBA (GTS-21): Chemical and pharmacological properties, *Mar. Drugs*, 4(3), 2006, 255-273.
- 79. Schaller S J, Nagashima M, Schonfelder M, Sasakawa T, Schulz F, Khan M A S, Kem W R, Schneider G, Schlegel J, Lewald H, *et al.* GTS-21 attenuates loss of body mass, muscle mass, and function in rats having systemic inflammation with and without disuse atrophy, *Pflugers Arch. Eur. J. Physiol*, 470(11), 2018, 1647-1657.
- 80. Kem W R, Mahnir V M, Papke R L, Lingle C J. Anabaseine is a potent agonist on muscle and neuronal alpha-bungarotoxin sensitive nicotinic receptors, *J. Pharmacol. Exp. Ther*, 283(3), 1997, 979-992.
- 81. Briggs C A, Buckley M J, Campbell J E, Decker M W, Donnelly-Roberts D, Elliott R L, Gopalakrishnan M, *et al.* Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 *in vitro* and *in vivo*, *Pharmacol. Biochem. Behav*, 57(1-2), 1997, 231-241.
- 82. Russo P, Bufalo A, Frustaci A, Fini M, Cesario A. Beyond Acetyl cholinesterase inhibitors for treating Alzheimer and a poss disease: α7- nAChR agonists in human clinical trials, *Curr. Pharm. Des.*, 20(38), 2014, 6014-6021.
- 83. Kitagawa H, Takenouchi T, Azuma R, Wesnes K A, Kramer W G, Clody D E, Burnett A L. Safety, pharmacokinetics and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers, *Neuropsycho Pharmacology*, 28(3), 2003, 542-551.
- 84. Kim T K, Hewavitharana A K, Shaw P N, Fuerst J A. Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction, *Appl. Environ. Microbiol*, 72(3), 2006, 2118-2125.

- 85. Kilic U, Kilic E, Lingor P, Yulug B, Bahr M. Rifampicin inhibits neurodegeneration in the optic nerve transection model *in vivo* and after 1- methyl-4-phenylpyridinium intoxication *in vitro*, *Acta Neuropathol*, 108(1), 2004, 65-68.
- 86. Dyrks T, Dyrks E, Masters C L, Beyreuther K. Amyloidogenicity of rodent and human βA4 sequences, *FEBS Lett*, 324(2), 1993, 231-236.
- 87. Tomiyama T, Asano S, Suwa Y, Morita T, Kataoka K I, Mori H, Endo N. Rifampicin prevents the aggregation and neurotoxicity of amyloid β protein *in vitro*, *Biochem. Biophys. Res. Commun*, 204(1), 1994, 76-83.
- 88. Mindermann T, Landolt H, Zimmerli W, Rajacic Z, Gratzl O. Penetration of rifampicin into the brain tissue and cerebral extracellular space of rats, *J. Antimicrob. Chemother*, 31(5), 1993, 731-737.
- 89. Findeis M A. Approaches to discovery and characterization of inhibitors of amyloid β-peptide polymerization, *Biochim. Biophys. Acta Mol. Basis Dis*, 1502(1), 2000, 76-84.
- 90. Ono K, Hasegawa K, Yoshiike Y, Takashima A, Yamada M, Naiki H. Nordihydroguaiaretic acid potently breaks down pre-formed Alzheimer's β- amyloid fibrils *in vitro*, *J. Neurochem*, 81(3), 2002, 434-440.
- 91. Umeda T, Ono K, Sakai A, Yamashita M, Mizuguchi M, Klein W L, Yamada M, Mori H, Tomiyama T. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers, *Brain*, 139(Pt5), 2016, 1568-1586.
- 92. Namba Y, Kawatsu K, Izumi S, Ueki A, Ikeda K. Neurofibrillary tangles and senile plaques in brain of elderly leprosy patients, *Lancet*, 340(8825), 1992, 978.
- 93. Endoh M, Kunishita T, Tabira T. No effect of anti-leprosy drugs in the prevention of Alzheimer's disease and β-amyloid neurotoxicity, *J. Neurol. Sci*, 165(1), 1999, 28-30.

- 94. Loeb M B, Molloy D W, Smith S, Borrie M, Decoteau E, Davidson W, *et al.* A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer's disease, *J. Am. Geriatr. Soc*, 52(3), 2004, 381-387.
- 95. Moreno J A, Ortori C A, Willis A E, Fischer P M, Barrett D A, *et al.* Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease inprion-infected mice, *Sci. Transl. Med*, 5(206), 2013, 206ra138.
- 96. Iizuka T, Morimoto K, Goto H. Preventive effect of rifampicin on Alzheimer disease needs at least 450mg daily for 1 Year: An FDG-PET follow-up study, *Dement. Geriatr. Cogn. Dis. Extra*, 7(2), 2017, 204-214.
- 97. Paterson I, Britton R, Delgado O, Gardner N M, Meyer A, Naylor G J, Poullennec K G. Total synthesis of (-)-dictyostatin, a microtubule-stabilising anticancer macrolide of marine sponge origin, *Tetrahedron*, 66, 2010, 6534-6545.
- 98. Kametani F, Hasegawa M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease, *Frontiers Neurosci*, 12, 2018, 25.
- 99. Makani V, Lee V M Y, Trojanowski J Q, Ballatore C, *et al.* Evaluation of the brainpenetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy, *Acta Neuropathol. Commun*, 4(1), 2016, 106.
- 100. Molloy D W, Standish T I, Zhou Q, Guyatt G. Amulticenter, blinded, randomized, factorial controlled trial of doxycycline and rifampin for treatment of Alzheimer's disease: The DARAD trial, *Int. J. Geriatr. Psychiatry*, 28(5), 2013, 463-470.

Please cite this article in press as: Shivanshu Kushwaha *et al.* Marine drug: Alzheimer's disease therapeutics agents: A review, *International Journal of Research in Pharmaceutical and Nano Sciences*, 14(3), 2025, 89-103.